direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

BMS Advanced Course: Discrete Optimization (ADM II)

LV-Nr.: 3236 L 236

Lecturers: Prof. Dr. Martin Skutella

Assistant: Torsten M├╝tze

Student assistant: Jonas Frede

 

Lecture: Wednesday 10-12, Thursday 12-14 (room MA 041) (starting April 19, 2017)

Exercise Session: Wednesday 8-10 (room MA 041)

 

Tutorial Sessions: t.b.a.

Consultation Hours: t.b.a.

 

All further information and lecture material can be found here (ISIS2).

To top

Content

This course gives an introduction into the area of Discrete Optimization. The topics covered include advanced linear programming, integer linear programming, shortest paths in networks, network flows, matchings, as well as optimization over matroids.

Students are expected to have solid knowledge of basic algorithms and data structures (e.g., from the first-year course on Computer Mathematics at TU Berlin) and linear programming (e.g., from the course Geometric Foundations of Linear Programming at TU Berlin).

Literature

  • R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows:  Theory, Algorithms, and Applications, Prentice-Hall, 1993.
  • T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 3rd edition, MIT Press, 2009.
  • W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schrijver, Combinatorial Optimization, Wiley, 1998.
  • L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton University Press, 1962.
  • M. R. Garey, D. S. Johnson, Computers and Intractability:  A Guide to the Theory of NP-Completeness, Freeman, 1979.
  • B. Korte, J. Vygen, Combinatorial Optimization:  Theory and Algorithms, Springer, 2002.
  • A. Schrijver, Combinatorial Optimization: Polyhedra and Effciency, Springer, 2003.
  • A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1986.

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.