direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Preprints

1989

Preprint 210-1989
Rolf H. Möhring and Franz J. Radermacher.
The Order-Theoretic Approach to Scheduling: The Stochastic Case.


Preprint 225-1989
Rudolf Müller and Dorothea Wagner.
α-Vertex-Separation is $N\!\!P$-hard even for 3-regular Graphs.


Preprint 230-1989
Wictor Piotrowski and Maciej M. Syslo.
A Minmax Facility Location Problem.


Preprint 235-1989
Andrzej Proskurowski and Maciej M. Sysło.
Efficient Computations in Tree-Like Graphs.


Preprint 227-1989
Maciej M. Syslo.
Bounds to the Page Number of Partially Ordered Sets.


Preprint 228-1989
Dorothea Wagner.
Decomposition of Partial Orders.


Preprint 209-1989
Dorothea Wagner and Frank Wagner.
An Efficient Parallel Logarithmic Time Algorithm for the Channel Routing Problem.


Preprint 215-1989
Dorothea Wagner and Frank Wagner.
Graph Separation is $N\!\!P$-hard even for Graphs with Bounded Degree.


Preprint 217-1989
Dorothea Wagner and Frank Wagner.
A Generalization of the Zero–One Principle for Sorting Algorithms.


Preprint 240-1989
Dorothea Wagner and Frank Wagner.
Channel Routing under Different Optimization Criteria.


1988

Preprint 192-1988
M. Bartusch and Rolf H. Möhring and Franz J. Radermacher.
M-Machine Unit Time Scheduling: A Report on Ongoing Research.


Preprint 188-1988
M. Bartusch and Rolf H. Möhring and Franz J. Radermacher.
Scheduling Project Networks with Resource Constraints and Time Windows.


Preprint 207-1988
Michel Habib and David Kelly and Rolf H. Möhring.
Interval Dimension is a Comparability Invariant..


Preprint -1988
Michel Habib and Rolf H. Möhring and George Steiner.
Computing The Bump Number of Ordered Sets is Easy.


Preprint 187-1988
Norbert Korte and Rolf H. Möhring.
An Incremental Linear-Time Algorithm to Recognize Interval Graphs.


Preprint 205-1988
Rolf H. Möhring and Franz J. Radermacher.
The Order-Theoretic Approach to Scheduling: The Deterministic Case.


1987

Preprint 181-1987
Rolf H. Möhring.
Computationally Tractable Classes of Ordered Sets.