direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Hinweis zum Copyright

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Publikationen

A QPTAS for the General Scheduling Problem with Identical Release Dates
Zitatschlüssel AntoniadisHoeksmaMeissner+2017
Autor Antoniadis, Antonios and Hoeksma, Ruben and Meißner, Julie and Verschae, José and Wiese, Andreas
Buchtitel Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP)
Jahr 2017
ISBN 978-3-95977-041-5
ISSN 1868-8969
DOI 10.4230/LIPIcs.ICALP.2017.31
Zusammenfassung The General Scheduling Problem (GSP) generalizes scheduling problems with sum of cost objectives such as weighted flow time and weighted tardiness. Given a set of jobs with processing times, release dates, and job dependent cost functions, we seek to find a minimum cost preemptive schedule on a single machine. The best known algorithm for this problem and also for weighted flow time/tardiness is an O(loglog P)-approximation (where P denotes the range of the job processing times), while the best lower bound shows only strong NP-hardness. When release dates are identical there is also a gap: the problem remains strongly NP-hard and the best known approximation algorithm has a ratio of e+\epsilon (running in quasi-polynomial time). We reduce the latter gap by giving a QPTAS if the numbers in the input are quasi-polynomially bounded, ruling out the existence of an APX-hardness proof unless NP\subseteq DTIME(2^polylog(n)). Our techniques are based on the QPTAS known for the UFP-Cover problem, a particular case of GSP where we must pick a subset of intervals (jobs) on the real line with associated heights and costs. If an interval is selected, its height will help cover a given demand on any point contained within the interval. We reduce our problem to a generalization of UFP-Cover and use a sophisticated divide-and-conquer procedure with interdependent non-symmetric subproblems. We also present a pseudo-polynomial time approximation scheme for two variants of UFP-Cover. For the case of agreeable intervals we give an algorithm based on a new dynamic programming approach which might be useful for other problems of this type. The second one is a resource augmentation setting where we are allowed to slightly enlarge each interval.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe