Inhalt des Dokuments
zur Navigation
Sven Jäger
Wissenschaftlicher Mitarbeiter
Fakultät II - Mathematik und Naturwissenschaften
Institut für Mathematik, Sekr. MA 5-2
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin
Deutschland
E-Mail: jaeger #at# math.tu-berlin.de
Tel.: +49 (0)30 314-21095
Fax: +49 (0)30 314-25191
Raum: MA 511
Sprechzeiten: Dienstag 17:00 Uhr. Bitte schicken Sie mir bis Dienstagmittag eine E-Mail, um den Zoom-Link zu erhalten.
Lehre
SS 2021 | Computerorientierte Mathematik II (theoretische Hausaufgaben) |
WS 2020/21 | Introduction to Linear and Combinatorial Optimization (ADM I) |
SS 2020 | Discrete Optimization (ADM II) |
WS 2019/20 | Introduction to Linear and Combinatorial Optimization (ADM I) |
SS 2019 | Discrete Optimization (ADM II) |
WS 2018/19 | Introduction to Linear and Combinatorial Optimization (ADM I) |
SS 2018 | Computerorientierte Mathematik II (Programmieraufgaben) |
WS 2017/18 | Computerorientierte Mathematik I (Programmieraufgaben) |
SS 2017 | Computerorientierte Mathematik II (theoretische Hausaufgaben) |
WS 2016/17 | Computerorientierte Mathematik I (theoretische Hausaufgaben) |
Lebenslauf
Seit Juli 2016 | Wissenschaftlicher Mitarbeiter am Lehrstuhl von Martin Skutella, Technische Universität Berlin |
2013 - 2016: | Masterstudium der Mathematik und der Angewandten Informatik an der Georg-August-Universität Göttingen |
2010 - 2013: | Bachelor-Studium der Mathematik und der Angewandten Informatik an der Georg-August-Universität Göttingen |
2010: | Abitur am Hainberg-Gymnasium Göttingen |
Veröffentlichungen
Zitatschlüssel | DaeubelJaegerMuetzeScheucher2019 |
---|---|
Autor | Däubel, Karl and Jäger, Sven and Mütze, Torsten and Scheucher, Manfred |
Buchtitel | Proceedings of the European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB) |
Seiten | 611–618 |
Jahr | 2019 |
ISSN | 0862-9544 |
Ort | Bratislava |
Journal | Acta Mathematica Universitatis Comenianae |
Jahrgang | 88 |
Nummer | 3 |
Monat | August |
Notiz | extended abstract |
Herausgeber | Nešetřil, Jaroslav and Škoviera, Martin |
Zusammenfassung | The n-cube is the poset obtained by ordering all subsets of 1,...,n by inclusion, and it can be partitioned into n choose ⌊n/2⌋ chains, which is the minimum possible number. Two such decompositions of the n-cube are called orthogonal if any two chains of the decomposition share at most a single element. Shearer and Kleitman conjectured in 1979 that the n-cube has ⌊n/2⌋+1 pairwise orthogonal decompositions into the minimum possible number of chains, and they constructed two such decompositions. Spink recently improved this by showing that the n-cube has three pairwise orthogonal chain decompositions for n ≥ 24. In this paper, we construct four pairwise orthogonal chain decompositions of the n-cube for n ≥ 60. We also construct five pairwise edge-disjoint symmetric chain decompositions of the n-cube for n ≥ 90, where edge-disjointness is a slightly weaker notion than orthogonality, improving on a recent result by Gregor, Jäger, Mütze, Sawada, and Wille. |
Zitatschlüssel | DaeubelJaegerMuetzeScheucher2019 |
---|---|
Autor | Däubel, Karl and Jäger, Sven and Mütze, Torsten and Scheucher, Manfred |
Buchtitel | Proceedings of the European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB) |
Seiten | 611–618 |
Jahr | 2019 |
ISSN | 0862-9544 |
Ort | Bratislava |
Journal | Acta Mathematica Universitatis Comenianae |
Jahrgang | 88 |
Nummer | 3 |
Monat | August |
Notiz | extended abstract |
Herausgeber | Nešetřil, Jaroslav and Škoviera, Martin |
Zusammenfassung | The n-cube is the poset obtained by ordering all subsets of 1,...,n by inclusion, and it can be partitioned into n choose ⌊n/2⌋ chains, which is the minimum possible number. Two such decompositions of the n-cube are called orthogonal if any two chains of the decomposition share at most a single element. Shearer and Kleitman conjectured in 1979 that the n-cube has ⌊n/2⌋+1 pairwise orthogonal decompositions into the minimum possible number of chains, and they constructed two such decompositions. Spink recently improved this by showing that the n-cube has three pairwise orthogonal chain decompositions for n ≥ 24. In this paper, we construct four pairwise orthogonal chain decompositions of the n-cube for n ≥ 60. We also construct five pairwise edge-disjoint symmetric chain decompositions of the n-cube for n ≥ 90, where edge-disjointness is a slightly weaker notion than orthogonality, improving on a recent result by Gregor, Jäger, Mütze, Sawada, and Wille. |
Vorträge
- Approximating Total Weighted Completion Time on Identical Parallel Machines with Precedence Constraints and Release Dates MAPSP 2019 PDF, 292 KB
- Generalizing the Kawaguchi-Kyan Bound to Stochastic Parallel Machine Scheduling COW 2018, STACS 2018, ISMP 2018, BMS-BGSMath Junior Meeting 2019, FRICO 2019 PDF, 232 KB
- Gray codes and symmetric chains ICALP 2018 PDF, 381 KB
- On orthogonal symmetric chain decompositions EUROCOMB 2019 PDF, 449 KB
- Scheduling Stochastic Jobs with Release Dates on a Single Machine Dagstuhl Seminar Scheduling 2020 PDF, 457 KB