direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationsliste aus einer BibTeX-Datei

Marsden, J.E. and Hughes, T.J.R. (1994). Mathematical Foundations of Elasticity. Dover Publications.

D. Martin and C. Fowlkes and D. Tal and J. Malik (2001). A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. Proc. 8th Int'l Conf. Computer Vision, 416–423.

P. Masri (December 1996). Computer Modelling of Sound for Transformation and Synthesis of Musical Signals. Dept. of Electrical and Electronic Engineering, University of Bristol

Aaron S. Master (Summer 2002). Nonstationary Sinusoidal Model Frequency Parameter Estimation via Fresnel Integral Analysis. Submitted as Stanford University EE 391 Report

Aaron S. Master and Yi-Wen Liu (2003). Robust Chirp Parameter Estimation for Hann Windowed Signals. IEEE International Conference on Multimedia and Exposition (ICME). Baltimore, MD

McGill, KC and Lateva, ZC (2001). A model of the muscle-fiber intracellular action potentialwaveform, including the slow repolarization phase. Biomedical Engineering, IEEE Transactions on, 1480–1483.

McGill, KC and Xiao, Z.C.S. (2001). A model of the muscle action potential for describing the leadingedge, terminal wave, and slow afterwave. Biomedical Engineering, IEEE Transactions on, 1357–1365.

Merletti, R. and Parker, P. (2004). Electromyography: Physiology, Engineering, and Noninvasive Applications. John Wiley & Sons.

Meschkowski, H. (1962). Hilbertsche Räume mit Kernfunktion. Springer Berlin.

Meyer, M. and Desbrun, M. and Schröder, P. and Barr, A.H. (2002). Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and mathematics. Citeseer, 35–57.

K. D. Mielenz (May-June 1997). Computation of Fresnel Integrals. Journal of Research of the National Institute of Standards and Technology, Volume 102, Number 3

K. D. Mielenz (July-August 2000). Computation of Fresnel Integrals II. Journal of Research of the National Institute of Standards and Technology, Volume 105, Number 4

P. A. Milder and F. Franchetti and J. C. Hoe and M. Püschel (2007). Discrete Fourier Transform Compiler: From Mathematical Representation to Efficient Hardware.

Minh, H.Q. and Niyogi, P. and Yao, Y. (2006). Mercer's Theorem, Feature Maps, and Smoothing. Proceedings of the 19th Annual Conference on Learning Theory (COLT)

K. Mischaikow and M. Mrozek (2002). Conley Index Theory. Handbook of Dynamical Systems II: Towards Applications, (B. Fiedler, ed.) North-Holland

K. Mischaikow and V. Nanda (2013). Morse Theory for Filtrations and Efficient Computation of Persistent Homology. to appear in Discrete and Computational Geometry

Paul Muhly (1997). Coordinates in Operator Algebras. Amer Mathematical Society.

Muhly, P.S. and Renault, J. and Williams, D.P. (1987). Equivalence and isomorphism for groupoid $C^*$-algebras. J. Operator Theory, 3–22.

Muhly, P.S. and Williams, D.P. (2008). Renault’s Equivalence Theorem for groupoid crossed products. New York Journal of Mathematics Monographs, 1–83.

C. L. Murch and S. K. Chalup (2004). Combining Edge and Colour Segmentation in the Four-Legged League. Australasian Conference on Robotics and Automation, 157–186.

M. Nikolic (2002). Detailed Analysis of Clinical Electromyography Signals. Institut for Kliniske Neurofag og Psykiatri Panum Instituttet, Denmark s. n.

Niyogi, P. and Smale, S. and Weinberger, S. (2008). Finding the homology of submanifolds with high confidence from random samples. Discrete and Computational Geometry. Springer, 419–441.

P. Niyogi and S. Smale and S. Weinberger (2006). Finding the Homology of Submanifolds with High Confidence from Random Samples. to appear, Discrete and Computational Geometry

D. O'Brien and A. I. Monaghan (January 2001). Concatenative Synthesis Based on a Harmonic Model. IEEE Transactions on Speech and Audio Processing, Vol 9, Num 1

D. O'Brien and A. I. Monaghan (1999). Shape invariant pitch modification of speech using a harmonic model. EUROSPEECH'99, 1059-1062

O'Hanlon, K. and Plumbley, M. D. (2011). STRUCTURE-AWARE DICTIONARY LEARNING WITH HARMONIC ATOMS. Proc 19th European Signal Processing Conference (EUSIPCO 2011), Barcelona, Spain, 29 Aug – 2 Sep 2011, 1761–1765.

R. Opfer (2006). Tight frame expansions of multiscale reproducing kernels in Sobolev spaces. Applied and Computational Harmonic Analysis, 357-374.

Otsu, Y. and Shioya, T. (1994). The Riemannian structure of Alexandrov spaces. J. Differential Geom, 629–658.

J. A. Packer (2004). Applications of the work of Stone and von Neumann to wavelets. arXiv:math.FA/0407037

G. Pallone (20 06 2003). Dilatation et Transposition sous Contraintes Perceptives des Signaux Audio. UNIVERSITE DE LA MEDITERRANEE-AIX-MARSEILLE II FACULTE DES SCIENCES DE LUMINY

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.