direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationsliste aus einer BibTeX-Datei

James W. Cooley and John W. Tukey (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 297–301.


Cox, T.F. and Cox, M.A.A. (2001). Multidimensional Scaling. Chapman & Hall/CRC.


R. E. Crochiere (February 1980). A Weighted Overlap-Add Method of Short-Time Fourier Analysis/Synthesis. IEEE Transactions on Acoustics, Speech, and Signal Processing


Cuntz, J. (2002). Noncommutative simplicial complexes and the Baum$-$Connes conjecture. Geometric And Functional Analysis. Springer, 307–329.


Daubechies, I. (1992). Ten Lectures on Wavelets. Society for Industrial Mathematics.



L. Daudet and S. Molla and B. Torrésani (2001). Transient detection and encoding using wavelet coefficient trees. Proceedings of the GRETSI'01 conference, F. Flandrin Ed


Daudet, L. and Morvidone, M. and Torresani, B. (1999). Time-frequency and time-scale vector fields for deforming time-frequency and time-scale representations. Proceedings of the SPIE conference, Denver, M. Unser Ed, 2–15.


De Luca, C.J. (1997). The use of surface electromyography in biomechanics. J Appl Biomech, 135–63.



Ph. Depalle and G. Garcia and X. Rodet (1993). Tracking of partials for additive sound synthesis using Hidden Markov Models. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Minneapolis, Minnesota


DeVille, R.E. and Lerman, E. (2010). Dynamics on networks I. Combinatorial categories of modular continuous-time systems. Arxiv preprint arXiv:1008.5359


J. Dieudonné (1979). Panorama des Mathématiques Pures, le Choix Bourbachique. Gauthier-Villars.


J. Dieudonné (1978). Éléments D'Analyse Tome 7. Paris, Gauthier-Villars.


J. Dieudonné (1975). Éléments D'Analyse. Tome 6. Paris, Gauthier-Villars.


J. Dieudonné (1974). Éléments D'Analyse. Tome 2. Paris, Gauthier-Villars.


J. Dieudonné (1974). Éléments D'Analyse. Tome 3. Paris, Gauthier-Villars.


J. Dieudonné (1971). Éléments D'Analyse. Tome 1. Paris, Gauthier-Villars.


I. Djurovic and L. Stankovic and M.J. Bastiaans (September 2001). Multidimensional reassignment method. Proc. TELSIKS 2001, 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, Nis, Yugoslavia, 19-21


Donoho, D.L. and Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 5591.


Donoho, D.L. and Grimes, C. (2002). When does Isomap recover the natural parameterization of families of articulated images. Stanford Univ., Stanford, CA, Tech. Rep, 2002.


Dorst, L. and Fontijne, D. and Mann, S. (2009). Geometric algebra for computer science: an object-oriented approach to geometry. Morgan Kaufmann.


K. Dykema and N. Strawn (2003). Manifold structure of spaces of spherical tight frames. arXiv:math/0307367


E. Carlsson, G. Carlsson, V. de Silva (2006). An algebraic topological method for feature identification. International Journal of Computational Geometry and Applications, 291–314.


Edelsbrunner, H. and Harer, J. (2008). Persistent homology - a survey. Surveys on discrete and computational geometry: twenty years later: AMS-IMS-SIAM Joint Summer Research Conference, June 18-22, 2006, Snowbird, Utah, 257.


Edelsbrunner, H. and Harer, J. (2008). Persistent homology-a survey. Contemporary mathematics. Providence, RI: American Mathematical Society, 257–282.


Edelsbrunner, H. and Harer, J. and Zomorodian, A. (2003). Hierarchical Morse-Smale Complexes for Piecewise Linear 2-Manifolds. Discrete Comput. Geom., 87–107.


Edelsbrunner, H. and Harer, J. and Zomorodian, A. (2001). Hierarchical Morse Complexes for Piecewise Linear 2-Manifolds. Proc. 17th Ann. ACM Sympos. Comput. Geom., 70–79.


Edelsbrunner, H. and Harer, J. and Zomorodian, A. (2001). Hierarchical Morse Complexes for Piecewise Linear 2-Manifolds. Proc. 17th Ann. ACM Sympos. Comput. Geom., 70–79.


Edelsbrunner, H. and Harer, J. L (2010). Computational topology: an introduction. American Mathematical Soc..


Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.