direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationsliste aus einer BibTeX-Datei

Zha, H. and Zhang, Z. (2007). Continuum Isomap for manifold learnings. Computational Statistics and Data Analysis. Elsevier, 184–200.


H. Zha and Z. Zhang (2004). Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM Journal of Scientific Computing, 313-338.


H. Zha and Z. Zhang (2003). Isometric Embedding and Continuum ISOMAP. Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), 864-871.


Zomorodian, A. (2005). Topology for Computing. Cambridge University Press.


Zomorodian, Afra (2001). Computing and Comprehending Topology: Persistence and Hierarchical Morse Complexes. University of Illinois at Urbana-Champaign


A. Zomorodian (2001). Computing and Comprehending Topology: Persistence and Hierarchical Morse Complexes. University of Illinois at Urbana-Champaign


Zomorodian, A. and Carlsson, G. (2005). Computing Persistent Homology. Discrete Comput. Geom., 249–274.


Zomorodian, A. and Carlsson, G. (2004). Computing Persistent Homology. Proc. 20th Ann. ACM Sympos. Comput. Geom., 347–356.


Zomorodian, A. and Edelsbrunner, H. (2002). Fast Software for Box Intersection. Int. J. Comput. Geom. Appl., 143–172.


Christensen, Ole (2003). An Introduction to Frames and Riesz Bases.. An Introduction to Frames and Riesz Bases.. Birkhäuser, xx+440.


Feichtinger, Hans G. and Gröchenig, Karlheinz (1988). A unified approach to atomic decompositions via integrable group representations. Lect. Notes in Math.. Springer, 52–73.


Feichtinger, H. G. and Gröchenig, K. (1992). Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view. Wavelets: a tutorial in theory and applications. Academic Press, 359-397.


Feichtinger, H. G. and Gröchenig, K. (1992). Non-orthogonal wavelet and Gabor expansions, and group representations. Wavelets and their Applications. Jones and Bartlett, 353–376.


Luef, Franz (2011). Projections in noncommutative tori and Gabor frames. Proc. Amer. Math. Soc., 571-582.



Luef, Franz (2006). On spectral invariance of non-commutative tori. Operator Theory, Operator Algebras, and Applications. Amer. Math. Soc., 131–146.


Ed. J. P. Pier (2000). Development of Mathematics 1950-2000. Birkhäuser.


Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.