direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationsliste aus einer BibTeX-Datei

Clewley, R.H. and Guckenheimer, J.M. and Valero-Cuevas, F.J. (2006). Estimating degrees of freedom in motor systems. arXiv:q-bio.QM/0610058


K. Dykema and N. Strawn (2003). Manifold structure of spaces of spherical tight frames. arXiv:math/0307367


J. A. Packer (2004). Applications of the work of Stone and von Neumann to wavelets. arXiv:math.FA/0407037


Heimburg, T. and Jackson, A.D. (2006). On the action potential as a propagating density pulse and the role of anesthetics. arXiv:physics/0610117


Luef, Franz (2011). Projections in noncommutative tori and Gabor frames. Proc. Amer. Math. Soc., 571-582.


J. R. Beltán and F. Beltrán (September 8-11, 2003). Additive Synthesis Based on the Continous Wavelet Transform: A Sinusoidal Plus Transient Model. Proc of the 6th Int Conference on Digital Audio Effects (DAFx-03) London, UK


Feichtinger, Hans G. and Gröchenig, Karlheinz (1988). A unified approach to atomic decompositions via integrable group representations. Lect. Notes in Math.. Springer, 52–73.


Lin, T. and Zha, H. and Lee, S.U. (2006). Riemannian Manifold Learning for Nonlinear Dimensionality Reduction. Lecture Notes in Computer Science. Springer, 44.


Ercolessi, E. and Landi, G. (1999). K-theory of noncommutative lattices. K-Theory, 339–362.



J. González and Guillemard, M. (2011). Algunas aplicaciones de la topología algebráica. In Aportaciones Matemáticas, Sociedad Matemática Mexicana, 153-170.


Luef, Franz (2006). On spectral invariance of non-commutative tori. Operator Theory, Operator Algebras, and Applications. Amer. Math. Soc., 131–146.


R. Baraniuk and R. DeVore and G. Kyriazis and X. Yu (2002). Near Best Tree Approximation. Advances in Computational Mathematics


Feichtinger, H.G. and Grochenig, K. (1993). Theory and practice of irregular sampling. Wavelets: Mathematics and Applications, 305–363.


Meyer, M. and Desbrun, M. and Schröder, P. and Barr, A.H. (2002). Discrete differential-geometry operators for triangulated 2-manifolds. Visualization and mathematics. Citeseer, 35–57.


Egner, S. and Johnson, J. and Padua, D. and Püschel, M. and Xiong, J. (2001). Automatic Derivation and Implementation of Signal Processing Algorithms t. Urbana, 61801.


P. Niyogi and S. Smale and S. Weinberger (2006). Finding the Homology of Submanifolds with High Confidence from Random Samples. to appear, Discrete and Computational Geometry


J. H. Brown (2009). Proper Actions of Groupoids on $C^*$-Algebras. to appear in Journal of Operator Theory arXiv:0907.5570


G. Teschke (2004). Construction of Generalized Uncertainty Principles and Wavelets in Bessel Potential Spaces. to appear in International Journal of Wavelets, Multiresolution and Information Processing


K. Mischaikow and V. Nanda (2013). Morse Theory for Filtrations and Efficient Computation of Persistent Homology. to appear in Discrete and Computational Geometry


Buneci, M.R. (2006). Groupoid $C^*$-Algebras. Surveys in Mathematics and its Applications, 71–98.


Conrad, M. and Prestin, J. (2001). Multiresolution on the Sphere. Summer School Lecture Notes on Principles of Multiresolution in Geometric Modelling (Summer School, Munich, August 22-30, 2001) A.Iske, E.Quak, M.S.Floater (eds.), 165-202


Aaron S. Master (Summer 2002). Nonstationary Sinusoidal Model Frequency Parameter Estimation via Fresnel Integral Analysis. Submitted as Stanford University EE 391 Report


Donoho, D.L. and Grimes, C. (2002). When does Isomap recover the natural parameterization of families of articulated images. Stanford Univ., Stanford, CA, Tech. Rep, 2002.


Y. Lu and P.C. Loizou (2008). A geometric approach to spectral subtraction. Speech communication. Elsevier, 453–466.


B. Torrésani (1995). Position-Frequency Analysis for Signals Defined on Spheres. Signal Processing 43, 341-346


Heil, C. and Walnut, D. (1989). Continuous and Discrete Wavelet Transforms. SIAM Review, 628-666.


Broomhead, DS and Kirby, M. (2000). A New Approach to Dimensionality Reduction: Theory and Algorithms. SIAM Journal on Applied Mathematics. SIAM, 2114.


H. Zha and Z. Zhang (2004). Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM Journal of Scientific Computing, 313-338.


Forman, R. (2002). A user’s guide to discrete Morse theory. Seminaire Lotharingien de Combinatoire, B48c.


Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.