direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationsliste aus einer BibTeX-Datei

vor >> [10]

Da Silva A.C. and Weinstein, A. (1999). Geometric Models for Noncommutative Algebras [14]. Amer Mathematical Society.

Aharon, M. and Elad, M. and Bruckstein, A. (2006). The K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [15]. IEEE Trans. On Signal Processing, 4311–4322.

Aharon, M. and Elad, M. and Bruckstein, A. (2005). K-SVD: Design of dictionaries for sparse representation [16]. Proceedings of SPARS, 9–12.

Ahlfors, L.V. (1986). Möbius transformations in $mathbbR^n$ expressed through 2$×$ 2 matrices of Clifford numbers [17]. Complex Variables and Elliptic Equations. Taylor & Francis, 215–224.

Ahlfors, L.V. (1986). Möbius transformations in $mathbbR^n$ expressed through mbox$2× 2$ matrices of clifford numbers [18]. Complex Variables and Elliptic Equations. Taylor & Francis, 215–224.

Ali, S.T. and Atakishiyev, N.M. and Chumakov, S.M. and Wolf, K.B. (2000). The Wigner function for general Lie groups and the wavelet transform [19]. Annales Henri Poincare, 685–714.

Ali, S.T. and Führ, H. and Krasowska, A.E. (2003). Plancherel inversion as unified approach to wavelet transforms and Wigner functions [20]. Annales Henri Poincare, 1015–1050.

S.T. Ali and H. Fuehr and A. Krasowska (2003). Plancherel inversion as unified approach to wavelet transforms and Wigner functions [21]. Ann. Henri Poincare 4, 1015-1050

M. An and R. Tolimieri (1997). Time-Frequency Representations [22]. Birkhäuser.

Anderson, F.W. and Fuller, K.R. (1992). Rings and categories of modules [23]. Springer.

F. Auger and P. Flandrin (Octobre 1993). The Why and How of Time-Frequency Reassignment [24]. IEEE-SP Int. Symp. on Time-Frequency and Time-Scale Analysis, Philadelphia (PA)

F. Auger and P. Flandrin and P. Goncalves and O. Lemoine (1995-1996). Time-Frequency Toolbox: for use with Matlab [25].

G. Bachman and L. Narici and E. Beckenstein (2000). Fourier and Wavelet Analysis [26]. Springer-Verlag. New York, Inc.

Baggett, L.W. and Larsen, N.S. and Packer, J.A. and Raeburn, I. and Ramsay, A. (2010). Direct limits, multiresolution analyses, and wavelets [27]. Journal of Functional Analysis. Elsevier, 2714–2738.

Balachandran, AP and Bimonte, G. and Ercolessi, E. and Landi, G. and Lizzi, F. and Sparano, G. and Teotonio-Sobrinho, P. (1996). Noncommutative lattices as finite approximations [28]. Journal of Geometry and Physics. Elsevier, 163–194.

R. Baraniuk (1999). Optimal Tree Approximation using Wavelets [29]. SPIE Technical Conference on Wavelet Applications in Signal Processing

R. Baraniuk and R. DeVore and G. Kyriazis and X. Yu (2002). Near Best Tree Approximation [30]. Advances in Computational Mathematics

M. J. Bastiaans and T. Alieva and L. Stankovic (2002). On rotated time-frequency kernels [31]. IEEE Signal Process. Lett. 9, nr. 11,

Belkin, M. and Niyogi, P. (2003). Laplacian Eigenmaps for Dimensionality Reduction and Data Representation [32]. Neural Computation. MIT Press, 1373–1396.

Belkin, M. and Sun, J. and Wang, Y. (2008). Discrete Laplace operator on meshed surfaces [33]. Proceedings of the twenty-fourth annual symposium on Computational geometry, 278–287.

J. R. Beltán and F. Beltrán (September 8-11, 2003). Additive Synthesis Based on the Continous Wavelet Transform: A Sinusoidal Plus Transient Model [34]. Proc of the 6th Int Conference on Digital Audio Effects (DAFx-03) London, UK

Blackadar, B. (1998). K-theory for operator algebras [35]. Cambridge Univ Pr.

Bloch, E.D. (2010). A Characterization of the Angle Defect and the Euler Characteristic in Dimension 2 [36]. Discrete and Computational Geometry. Springer, 100–120.

Bobenko, A.I. and Suris, Y.B. (2008). Discrete Differential Geometry: Integrable Structure [37]. Amer Mathematical Society.

Bowman, C. and Baumgartner, R. and Somorjai, R. (2002). Dimensionality reduction for bio-medical spectra [38]. Electrical and Computer Engineering, 2002. IEEE CCECE 2002. Canadian Conference on

C. B. Boyer and U. C. Merzbach (1989). A History of Mathematics [39]. John Wiley and Sons.

Broomhead, DS and Kirby, M. (2000). A New Approach to Dimensionality Reduction: Theory and Algorithms [40]. SIAM Journal on Applied Mathematics. SIAM, 2114.

Brown, J.H. (2009). Proper Actions of Groupoids on $C^*$-Algebras [41]. Darthmouth College

J. H. Brown (2009). Proper Actions of Groupoids on $C^*$-Algebras [42]. to appear in Journal of Operator Theory arXiv:0907.5570

Brun, A. (February 2006). Manifold Learning and Representations for Image Analysis and Visualization [43]. Linköping University, Department of Biomedical Engineering.

vor >> [53]
------ Links: ------

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
Copyright TU Berlin 2008