direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationsliste aus einer BibTeX-Datei

Da Silva A.C. and Weinstein, A. (1999). Geometric Models for Noncommutative Algebras. Amer Mathematical Society.

Aharon, M. and Elad, M. and Bruckstein, A. (2006). The K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. On Signal Processing, 4311–4322.

Aharon, M. and Elad, M. and Bruckstein, A. (2005). K-SVD: Design of dictionaries for sparse representation. Proceedings of SPARS, 9–12.

Ahlfors, L.V. (1986). Möbius transformations in $\mathbbR^n$ expressed through 2$×$ 2 matrices of Clifford numbers. Complex Variables and Elliptic Equations. Taylor & Francis, 215–224.

Ahlfors, L.V. (1986). Möbius transformations in $\mathbbR^n$ expressed through \mbox$2× 2$ matrices of clifford numbers. Complex Variables and Elliptic Equations. Taylor & Francis, 215–224.

Ali, S.T. and Atakishiyev, N.M. and Chumakov, S.M. and Wolf, K.B. (2000). The Wigner function for general Lie groups and the wavelet transform. Annales Henri Poincare, 685–714.

Ali, S.T. and Führ, H. and Krasowska, A.E. (2003). Plancherel inversion as unified approach to wavelet transforms and Wigner functions. Annales Henri Poincare, 1015–1050.

S.T. Ali and H. Fuehr and A. Krasowska (2003). Plancherel inversion as unified approach to wavelet transforms and Wigner functions. Ann. Henri Poincare 4, 1015-1050

M. An and R. Tolimieri (1997). Time-Frequency Representations. Birkhäuser.

Anderson, F.W. and Fuller, K.R. (1992). Rings and categories of modules. Springer.

F. Auger and P. Flandrin (Octobre 1993). The Why and How of Time-Frequency Reassignment. IEEE-SP Int. Symp. on Time-Frequency and Time-Scale Analysis, Philadelphia (PA)

F. Auger and P. Flandrin and P. Goncalves and O. Lemoine (1995-1996). Time-Frequency Toolbox: for use with Matlab.

G. Bachman and L. Narici and E. Beckenstein (2000). Fourier and Wavelet Analysis. Springer-Verlag. New York, Inc.

Baggett, L.W. and Larsen, N.S. and Packer, J.A. and Raeburn, I. and Ramsay, A. (2010). Direct limits, multiresolution analyses, and wavelets. Journal of Functional Analysis. Elsevier, 2714–2738.

Balachandran, AP and Bimonte, G. and Ercolessi, E. and Landi, G. and Lizzi, F. and Sparano, G. and Teotonio-Sobrinho, P. (1996). Noncommutative lattices as finite approximations. Journal of Geometry and Physics. Elsevier, 163–194.

R. Baraniuk (1999). Optimal Tree Approximation using Wavelets. SPIE Technical Conference on Wavelet Applications in Signal Processing

R. Baraniuk and R. DeVore and G. Kyriazis and X. Yu (2002). Near Best Tree Approximation. Advances in Computational Mathematics

M. J. Bastiaans and T. Alieva and L. Stankovic (2002). On rotated time-frequency kernels. IEEE Signal Process. Lett. 9, nr. 11,

Belkin, M. and Niyogi, P. (2003). Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation. MIT Press, 1373–1396.

Belkin, M. and Sun, J. and Wang, Y. (2008). Discrete Laplace operator on meshed surfaces. Proceedings of the twenty-fourth annual symposium on Computational geometry, 278–287.

J. R. Beltán and F. Beltrán (September 8-11, 2003). Additive Synthesis Based on the Continous Wavelet Transform: A Sinusoidal Plus Transient Model. Proc of the 6th Int Conference on Digital Audio Effects (DAFx-03) London, UK

Blackadar, B. (1998). K-theory for operator algebras. Cambridge Univ Pr.

Bloch, E.D. (2010). A Characterization of the Angle Defect and the Euler Characteristic in Dimension 2. Discrete and Computational Geometry. Springer, 100–120.

Bobenko, A.I. and Suris, Y.B. (2008). Discrete Differential Geometry: Integrable Structure. Amer Mathematical Society.

Bowman, C. and Baumgartner, R. and Somorjai, R. (2002). Dimensionality reduction for bio-medical spectra. Electrical and Computer Engineering, 2002. IEEE CCECE 2002. Canadian Conference on

C. B. Boyer and U. C. Merzbach (1989). A History of Mathematics. John Wiley and Sons.

Broomhead, DS and Kirby, M. (2000). A New Approach to Dimensionality Reduction: Theory and Algorithms. SIAM Journal on Applied Mathematics. SIAM, 2114.

Brown, J.H. (2009). Proper Actions of Groupoids on $C^*$-Algebras. Darthmouth College

J. H. Brown (2009). Proper Actions of Groupoids on $C^*$-Algebras. to appear in Journal of Operator Theory arXiv:0907.5570

Brun, A. (February 2006). Manifold Learning and Representations for Image Analysis and Visualization. Linköping University, Department of Biomedical Engineering.

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.