TU Berlin

Karl DäubelKarl Däubel

Inhalt des Dokuments

zur Navigation

Karl Däubel

Lupe

Wissenschaftlicher Mitarbeiter

Fakultät II - Mathematik und Naturwissenschaften
Institut für Mathematik, Sekr. MA 5-2

Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin
Germany

E-Mail:
Tel.: +49 (0)30 314-78657
Fax: +49 (0)30 314-25191
Raum: MA 514
Sprechzeiten: nach Vereinbarung

Forschungsinteressen

Kombinatorische Optimierung und Algorithmen:

  • Unsplittable Flows/Ring Loading
  • Anwendungen in der Logistik für große Netzwerke
  • Inkrementelle Flüsse

Veröffentlichungen

On orthogonal symmetric chain decompositions
Zitatschlüssel DaeubelJaegerMuetzeScheucher2019b
Autor Däubel, Karl and Jäger, Sven and Mütze, Torsten and Scheucher, Manfred
Seiten P3.64
Jahr 2019
ISSN 1077-8926
Journal Electronic Journal of Combinatorics
Jahrgang 26
Nummer 3
Monat 09
Notiz Full version
Zusammenfassung The n-cube is the poset obtained by ordering all subsets of 1,…,n by inclusion, and it can be partitioned into n choose ⌊n/2⌋ chains, which is the minimum possible number. Two such decompositions of the n-cube are called orthogonal if any two chains of the decompositions share at most a single element. Shearer and Kleitman conjectured in 1979 that the n-cube has ⌊n/2⌋+1 pairwise orthogonal decompositions into the minimum number of chains, and they constructed two such decompositions. Spink recently improved this by showing that the n-cube has three pairwise orthogonal chain decompositions for n≥24. In this paper, we construct four pairwise orthogonal chain decompositions of the n-cube for n≥60. We also construct five pairwise edge-disjoint symmetric chain decompositions of the n-cube for n≥90, where edge-disjointness is a slightly weaker notion than orthogonality, improving on a recent result by Gregor, Jäger, Mütze, Sawada, and Wille.
Link zur Originalpublikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe