direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Sven Jäger

Lupe

Research assistant

Fakultät II - Mathematik und Naturwissenschaften
Institut für Mathematik, Sekr. MA 5-2

Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin
Germany

E-Mail:
Tel.: +49 (0)30 314-21095
Fax: +49 (0)30 314-25191
Room: MA 511
Consultation hours: Tuesday 5:00 pm. Please send me an email before Tuesday noon in order to get the zoom link.

Research interests

  • Apprroximation algorithms
  • Scheduling
  • Symmetric Chain Decompositions

Teaching

Assistances
Summer 2021
Computerorientierte Mathematik II (theoretical exercises)
Winter 2020/21
Introduction to Linear and Combinatorial Optimization (ADM I)
Summer 2020
Discrete Optimization (ADM II)
Winter 2019/20
Introduction to Linear and Combinatorial Optimization (ADM I)
Summer 2019
Discrete Optimization (ADM II)
Winter 2018/19
Introduction to Linear and Combinatorial Optimization (ADM I)
Summer 2018
Computerorientierte Mathematik II (programming exercises)
Winter 2017/18
Computerorientierte Mathematik I (programming exercises)
Summer 2017
Computerorientierte Mathematik II (theoretical exercises)
Winter 2016/17
Computerorientierte Mathematik I (theoretical exercises)

Curriculum Vitae

Since July 2016
Doctoral student with Martin Skutella, Technische Universität Berlin
2013 - 2016:
Master studies in Mathematics and in Applied Computer Science at Georg-August-Universität Göttingen, Germany.
2010 - 2013:
Bachelor studies in Mathematics and in Applied Computer Science at Georg-August-Universität Göttingen, Germany.
2010:
Abitur at Hainberg-Gymnasium Göttingen

Publications

Gray codes and symmetric chains
Citation key GregorJaegerMuetze+2018
Author Gregor, Petr and Jäger, Sven and Mütze, Torsten and Sawada, Joe and Wille, Kaja
Title of Book 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)
Pages 66:1–66:14
Year 2018
ISBN 978-3-95977-076-7
ISSN 1868-8969
DOI 10.4230/LIPIcs.ICALP.2018.66
Location Prague
Address Dagstuhl, Germany
Volume 107
Month 7
Editor Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, Dániel and Sannella, Donald
Publisher Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik
Series Leibniz International Proceedings in Informatics (LIPIcs)
Abstract We consider the problem of constructing a cyclic listing of all bitstrings of length 2n+1 with Hamming weights in the interval [n+1-l,n+l], where 1 <= l <= n+1, by flipping a single bit in each step. This is a far-ranging generalization of the well-known middle two levels problem (l=1). We provide a solution for the case l=2 and solve a relaxed version of the problem for general values of l, by constructing cycle factors for those instances. Our proof uses symmetric chain decompositions of the hypercube, a concept known from the theory of posets, and we present several new constructions of such decompositions. In particular, we construct four pairwise edge-disjoint symmetric chain decompositions of the n-dimensional hypercube for any n >= 12.
Link to original publication Download Bibtex entry
Gray codes and symmetric chains
Citation key GregorJaegerMuetze+2018
Author Gregor, Petr and Jäger, Sven and Mütze, Torsten and Sawada, Joe and Wille, Kaja
Title of Book 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)
Pages 66:1–66:14
Year 2018
ISBN 978-3-95977-076-7
ISSN 1868-8969
DOI 10.4230/LIPIcs.ICALP.2018.66
Location Prague
Address Dagstuhl, Germany
Volume 107
Month 7
Editor Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, Dániel and Sannella, Donald
Publisher Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik
Series Leibniz International Proceedings in Informatics (LIPIcs)
Abstract We consider the problem of constructing a cyclic listing of all bitstrings of length 2n+1 with Hamming weights in the interval [n+1-l,n+l], where 1 <= l <= n+1, by flipping a single bit in each step. This is a far-ranging generalization of the well-known middle two levels problem (l=1). We provide a solution for the case l=2 and solve a relaxed version of the problem for general values of l, by constructing cycle factors for those instances. Our proof uses symmetric chain decompositions of the hypercube, a concept known from the theory of posets, and we present several new constructions of such decompositions. In particular, we construct four pairwise edge-disjoint symmetric chain decompositions of the n-dimensional hypercube for any n >= 12.
Link to original publication Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.