direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Seminar on Algorithmic Discrete Mathematics


We will read and understand recent publications on Combinatorial Optimization, Discrete Algorithms, and related areas.


Participants should already be familiar with the most important techniques and algorithms from Algorithmic Discrete Mathematics, as e.g. obtained by taking the courses on Geometric Foundations on Linear Optimization (former ADM I) and Discrete Optimization (ADM II).

Important Dates

On January 6, 2017, 10-12, in room MA548, all participants have to give a 5 minutes outline of their seminar topic. More details will be announced shortly.

The seminar will be organized as a block course and take place on February 22 and 23, 2017, between 9am and 6pm in room MA544. More details will be announced shortly.

An informal meeting took place on October 31, 2016 at 16:00h in room MA315.

In order to register for the seminar, please send an email to martin.skutella@tu-berlin.de [1] with the following information by Wednesday, Nov. 2:

  • last name:
  • first name:
  • matr.-nr.:
  • email-address: 
  • study program (BSc or MSc Mathe/Wirtschaftsmathe/Technomathe):
  • prior knowledge (which ADM-courses did you attend):
  • do you plan to write a BSc/MSc thesis based on the seminar?:
  • list of 3-4 favorite topics (numbers) sorted by decreasing preference:
  • remarks (optional): 


Prof. Dr. Martin Skutella [2], Sebastian Schenker [3]

List of papers

(in case you cannot access the papers via the corresp. link, write a message to Sebastian [4])

  1. R. Duan and S. Pettie: Linear-Time Approximation for Maximum Weight Matching link [5]
  2. J. Erickson: Maximum flows and parametric shortest paths in planar graphs link [6]
  3. A. Gupta and A. Kumar: Greedy Algorithms for Steiner Forest link [7]
  4. C. Ambühl, M. Mastrolilli, N. Mutsanas and O. Svensson: On the Approximability of Single-Machine Scheduling with Precedence Constraints link [8]
  5. S. Chechik, D.H. Larkin, L. Roditty, G. Schoenebeck, R.E. Tarjan and V.V. Williams: Better Approximation Algorithms for the Graph Diameter link [9]
  6. L. Bulteau, V. Froese and N. Talmon: Multi-player Diffusion Games on Graph Classes link [10]
  7. C. Kalaitzis, O. Svensson and J. Tarnawski: Unrelated Machine Scheduling of Jobs with Uniform Smith Ratios link [11]
  8. M.X. Goemans and T. Rothvoß: Polynomiality for Bin Packing with a Constant Number of Item Types link [12]
  9. N. Boland, H. Charkhgard and M. Savelsbergh: The L-shape search method for triobjective integer programming link [13]
  10. D. Adjiashvili, A. Baggio and R. Zenklusen: Firefighting on Trees Beyond Integrality Gaps link [14]
  11. S. Fujishige, M. Goemans, T. Harks, B. Peis and R. Zenklusen: Matroids are Immune to Braess Paradox link [15]
  12. B. Stevens and A. Williams: The Coolest Way to Generate Binary Strings link [16]
  13. T. Dueholm Hansen and U. Zwick: Random-Edge is slower than Random-Facet on abstract cubes link [17]
  14. N. Kayal, C. Saha and S. Tavenas: An almost Cubic Lower Bound for Depth Three Arithmetic Circuits link [18]
  15. C. Demetrescu, G. F. Italiano: A New Approach to Dynamic All Pairs Shortest Paths link [19]
  16. Special topics for BSc-students: A. Schrijver: Combinatorial Optimization, Chapters 15, 29, 41, 44, or 45.
------ Links: ------

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
Copyright TU Berlin 2008