TU Berlin

FG Kombinatorische Optimierung und GraphenalgorithmenDiscrete Optimization (ADM II)

COGA 5-Wheel

Inhalt des Dokuments

zur Navigation

BMS Advanced Course: Diskrete Optimierung (ADM II)

LV-Nr.: 3236 L 236

Dozenten: Prof. Dr. Martin Skutella

Assistent: Torsten Mütze

Tutor: Jonas Frede (frede@campus.tu-berlin.de)

 

Vorlesungen: Mi 10-12 Uhr, Do 12-14 Uhr (Raum MA 041)

Übung: Mi 08-10 (Raum MA 041)

Tutorien: Do 14-16 (Raum MA 841), Fr 10-12 (Raum MA 551)

Sprechstunde: Mi 14-16 (MA 849)

 

Weitere Informationen und Inhalte zur Vorlesung erhält man hier (ISIS2).

Inhalt

This course gives an introduction into the area of Discrete Optimization. The topics covered include advanced linear programming, integer linear programming, shortest paths in networks, network flows, matchings, as well as optimization over matroids.

Students are expected to have solid knowledge of basic algorithms and data structures (e.g., from the first-year course on Computer Mathematics at TU Berlin) and linear programming (e.g., from the course Geometric Foundations of Linear Programming at TU Berlin).

Literatur

     

  • R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, 1993.
  • T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 3rd edition, MIT Press, 2009.
  • W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schrijver, Combinatorial Optimization, Wiley, 1998.
  • L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton University Press, 1962.
  • M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, 1979.
  • B. Korte, J. Vygen, Combinatorial Optimization: Theory and Algorithms, Springer, 2002.
  • A. Schrijver, Combinatorial Optimization: Polyhedra and Effciency, Springer, 2003.
  • A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1986.

     

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe