Convex Optimization and Applications 5 - Ellipsoid Methods

Guillaume Sagnol

Outline

- 1 Introduction
- 2 Halfving Ellipsoids
- 3 Feasibility Problems
- 4 Convex Optimization Problems
- 5 Weak separation & optimization

G. Sagnol 5 - Ellipsoid Methods 2 / 18

History

Ellipsoid Method

- Introduced in the 70's by Shor, and Yudin & Nemirovski
- Modifications by Khachian (1979), so it can solve LPs in polynomial time, i.e., an algorithm that finds an optimal solution of $\min\{c^Tx : Ax \leq b\}$ in time polynomial w.r.t. bit-size of (A, b, c)
- Essential contributions of Grötschel, Lovász and Schrijver (1981):
 - Weak separation + finite-precision arithmetics
 - Applications to combinatorial optimization
- Not a practical method, but formidable tool:

"separation of C" \iff "optimization over C"

Warm-up: Bisection method

Consider the one-dimensional minimization problem for a convex function $f : [\ell_0, u_0] \to \mathbb{R}$:

$$\mathbf{minimize}_{x \in [\ell_0, u_0]} f(x).$$

At iteration k > 1:

- Evaluate $f'(x_k)$
- If $f'(x_k) < 0$:

$$(\ell_k, u_k) \leftarrow (x_k, u_{k-1})$$

Else:

$$(\ell_k, u_k) \leftarrow (\ell_{k-1}, x_k)$$

Interval is halved at each iteration \rightarrow fast convergence.

G. Sagnol

From Bisection to Ellipsoid method

Bisection method

- 1-dimensional problems
- Intervals $I_k \supset$ optimal set
- Evaluate $f'(x_k)$
- $\blacksquare \operatorname{len}(I_k) = \frac{1}{2} \operatorname{len}(I_{k-1})$

Ellipsoid method

- n-dimensional problems
- Ellipsoids $E_k \supseteq$ optimal set
- Separation oracle
- $\operatorname{vol}(E_k) \leq \alpha \operatorname{vol}(E_{k-1})$, for some $\alpha < 1$.

G. Sagnol 5 - Ellipsoid Methods 5 / 18

Löwner-John Ellipsoid

Theorem (John, 1948).

Every convex body $K \subset \mathbb{R}^n$ (i.e., compact convex, non-empty interior) is contained in a unique ellipsoid E of minimal volume, called the Löwner-John ellipsoid of K.

Moreover, the ellipsoid obtained by shrinking E by a factor $\frac{1}{n}$ around its center is contained in K

G. Sagnol 5 - Ellipsoid Methods 6 / 18

In the ellipsoid method, the operation corresponding to "halving intervals" is to "take the Löwner-John Ellipsoid of a half-ellipsoid"

In the ellipsoid method, the operation corresponding to "halving intervals" is to "take the Löwner-John Ellipsoid of a half-ellipsoid"

G. Sagnol 7/18

In the ellipsoid method, the operation corresponding to "halving intervals" is to "take the Löwner-John Ellipsoid of a half-ellipsoid"

This can be done efficiently!

Proposition (L-J Ellipsoid of a half-ellipsoid).

Let
$$E = E(\mathbf{a}, Q) := \{ \mathbf{x} \in \mathbb{R}^n : (\mathbf{x} - \mathbf{a})^T Q^{-1} (\mathbf{x} - \mathbf{a}) \le 1 \},$$

 $H = E \cap \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{h}^T \mathbf{x} \le \mathbf{h}^T \mathbf{a} \}, \quad \mathbf{b} := \frac{1}{\sqrt{\mathbf{h}^T Q \mathbf{h}}} Q \mathbf{h}.$

Then, the L-J ellipsoid of H is E' = E(a', Q'), where

$$\mathbf{a}' := \mathbf{a} - \frac{1}{(n+1)}\mathbf{b}$$

$$Q' := \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1}\mathbf{b}\mathbf{b}^T \right)$$

G. Sagnol

Volume reduction

The volume of the Löwner-John ellipsoid of a half-ellipsoid is within a constant fraction of the original volume:

Lemma

Let $E' = E(\mathbf{a}', Q')$ be the Löwner-John ellipsoid of $E(\mathbf{a}, Q) \cap \{\mathbf{x} \in \mathbb{R}^n : \mathbf{h}^T \mathbf{x} \leq \mathbf{h}^T \mathbf{a}\}$. Then,

 $\mathsf{volume}(E') < e^{-\frac{1}{2(n+1)}}\,\mathsf{volume}(E).$

9 / 18

Separation Oracle

Framework:

- Minimize a linear function $f(x) = \langle c, x \rangle$ over a convex body $K \in \mathbb{R}^n$.
- The feasible set *K* is not given by constraints, but instead we assume that a *separation oracle* is available.

G. Sagnol 5 - Ellipsoid Methods 10 / 18

Separation Oracle

Framework:

- Minimize a linear function $f(x) = \langle c, x \rangle$ over a convex body $K \in \mathbb{R}^n$.
- The feasible set K is not given by constraints, but instead we assume that a *separation oracle* is available.

Case 1: $x \in K$

Oracle returns "yes"

G. Sagnol 5 - Ellipsoid Methods 10 / 18

Separation Oracle

Framework:

- Minimize a linear function $f(x) = \langle c, x \rangle$ over a convex body $K \in \mathbb{R}^n$.
- The feasible set *K* is not given by constraints, but instead we assume that a *separation oracle* is available.

Case 2: $x \notin K$

Oracle returns separating hyperplane *h*:

lacksquare $\langle \boldsymbol{h}, \boldsymbol{x} \rangle < \langle \boldsymbol{h}, \boldsymbol{z} \rangle, \forall \boldsymbol{z} \in K$

- \triangleright Start with large ellipsoid \mathcal{E} that contains K. Its center is \mathbf{x} .
- ▶ Repeat until convergence:

G. Sagnol 5 - Ellipsoid Methods 11 / 18

- \triangleright Start with large ellipsoid \mathcal{E} that contains K. Its center is \mathbf{x} .
- ▶ Repeat until convergence:
 - 1 Query Separation Oracle at x.

G. Sagnol 5 - Ellipsoid Methods 11 / 18

- \triangleright Start with large ellipsoid \mathcal{E} that contains K. Its center is \mathbf{x} .
- ⊳ Repeat until convergence:
 - 1 Query Separation Oracle at x.
 - 2 If $x \notin K$, we get a halfspace H s.t. $K \subset H$.

Compute min. volume ellipsoid that contains the half-ellipsoid $H \cap \mathcal{E}$.

G. Sagnol 5 - Ellipsoid Methods 11 / 18

- \triangleright Start with large ellipsoid \mathcal{E} that contains K. Its center is \mathbf{x} .
- ▶ Repeat until convergence:
 - 1 Query Separation Oracle at x.
 - 2 If $x \notin K$, we get a halfspace H s.t. $K \subset H$.

Compute min. volume ellipsoid that contains the half-ellipsoid $H \cap \mathcal{E}$.

Update \mathcal{E} and \mathbf{x} .

- \triangleright Start with large ellipsoid \mathcal{E} that contains K. Its center is \mathbf{x} .
- ▶ Repeat until convergence:
 - 1 Query Separation Oracle at x.
 - 2 If $x \notin K$, we get a halfspace H s.t. $K \subset H$.

Compute min. volume ellipsoid that contains the half-ellipsoid $H \cap \mathcal{E}$.

Update \mathcal{E} and x.

3 Otherwise, define $H = \{z : \langle c, z \rangle \le \langle c, x \rangle \},$

- \triangleright Start with large ellipsoid \mathcal{E} that contains K. Its center is \mathbf{x} .
- ▶ Repeat until convergence:
 - 1 Query Separation Oracle at x.
 - 2 If $x \notin K$, we get a halfspace H s.t. $K \subset H$.

Compute min. volume ellipsoid that contains the half-ellipsoid $H \cap \mathcal{E}$.

Update \mathcal{E} and x.

3 Otherwise, define $H = \{ z : \langle c, z \rangle \le \langle c, x \rangle \}$, and proceed as above.

- \triangleright Start with large ellipsoid \mathcal{E} that contains K. Its center is \mathbf{x} .
- ▶ Repeat until convergence:
 - 1 Query Separation Oracle at x.
 - 2 If $x \notin K$, we get a halfspace H s.t. $K \subset H$.

Compute min. volume ellipsoid that contains the half-ellipsoid $H \cap \mathcal{E}$.

Update \mathcal{E} and x.

3 Otherwise, define $H = \{ z : \langle c, z \rangle \le \langle c, x \rangle \}$, and proceed as above.

Analysis for feasibility problems

Assumptions: We are given R, r > 0 such that

- (i) $K \subseteq B(\mathbf{0}, R)$
- (ii) either $K = \emptyset$, or $\exists x \in K : \supseteq B(x, r) \subseteq K$.

Under (i) and (ii), we can solve the feasibility problem (find $x \in K$, or assert that $K = \emptyset$) by calling the separation oracle $O(n^2 \log(R/r))$ times.

Theorem

If, after $N = \lfloor 2n(n+1)\log(R/r) \rfloor$ iterations, the ellipsoid algorithm didn't find a point $x \in K$, then K is empty.

G. Sagnol 5 - Ellipsoid Methods 12 / 18

Analysis for optimization problems

$$p^* = \inf_{\mathbf{x} \in K} \mathbf{c}^T \mathbf{x},\tag{P}$$

- The solution of (P) can be irrational. Hence, we search ϵ —suboptimal solutions.
- If we can solve feasibility problems, then we can solve the optimization problem to arbitrary precision, by binary search: Find the largest δ such that $\{x \in K : c^T x < \delta\} \neq \emptyset$.
- But as δ approaches p^* , the (δp^*) -suboptimal set becomes very small: will assumption (ii) still hold?

G. Sagnol 5 - Ellipsoid Methods 13 / 18

Analysis for optimization problems

Under (i) and (ii), the ϵ -suboptimal set cannot be too small:

Proposition

Let K be a convex body satisfying (i) and (ii) for r, R > 0, and let $0 < \epsilon < R$. Then, either K is empty, or the ϵ -suboptimal set for (P) contains a ball of radius $\frac{r\epsilon}{2R+r}$.

G. Sagnol 5 - Ellipsoid Methods 14 / 18

Analysis for optimization problems

Under (i) and (ii), the ϵ -suboptimal set cannot be too small:

Proposition

Let K be a convex body satisfying (i) and (ii) for r, R > 0, and let $0 < \epsilon < R$. Then, either K is empty, or the ϵ -suboptimal set for (P) contains a ball of radius $\frac{r\epsilon}{2R+r}$.

This allows us to show the following result:

Theorem

If constants R and r are known such that K satisfies (i)-(ii), then we can find an ϵ -suboptimal solution of (P), or assert that this problem is infeasible, by making

$$O\left(n^2 \log \frac{R}{\min(r,\epsilon)}\right)$$
 calls to the separation oracle.

G. Sagnol 5 - Ellipsoid Methods 14 / 18

Weak separation & Optimization

Exact separators: not realistic using finite-precision arithmetics. Moreover, there is a square-root in the formula for the L-J ellipsoid of a half-ellipsoid, which must be approximated.

Definition

Let $K \subset \mathbb{R}^n$.

- We say that x is ϵ -almost in K, and we write $x \in K^{+\epsilon}$, if $\exists z \in K$, $||x z|| \le \epsilon$.
- We say that x is ϵ -deep in K, and we write $x \in K^{-\epsilon}$, if $B(x, \epsilon) \subseteq K$.

G. Sagnol 5 - Ellipsoid Methods 15 / 18

Weak separation & Optimization

For weak optimization and separation problems, it is sufficient to distinguish between points that are almost/deep in K:

Definition (Weak optimization).

Given K, c, ϵ , either

- Return $x^* \in K^{+\epsilon}$ such that $c^T x^* \le c^T y + \epsilon$, $\forall y \in K^{-\epsilon}$;
- \blacksquare or assert that $K^{-\epsilon}$ is empty.

G. Sagnol 5 - Ellipsoid Methods 16 / 18

Weak separation & Optimization

For weak optimization and separation problems, it is sufficient to distinguish between points that are almost/deep in K:

Definition (Weak optimization).

Given K, c, ϵ , either

- Return $x^* \in K^{+\epsilon}$ such that $c^T x^* \le c^T y + \epsilon$, $\forall y \in K^{-\epsilon}$;
- lacksquare or assert that $K^{-\epsilon}$ is empty.

Definition (Weak separation).

Given K, x, ϵ , either

- Assert that $x \in K^{+\epsilon}$;
- or return h with $||h||_{\infty} = 1$ such that $h^T x^* < h^T y + \epsilon$, $\forall y \in K^{-\epsilon}$

G. Sagnol

Grötschel, Lovász & Schrijver's theorems

Theorem

Given R and a polynomial-time weak separation oracle for $K \subseteq B(0, R)$, we can solve the weak optimization problem in polynomial time.

G. Sagnol 5 - Ellipsoid Methods 17 / 18

Grötschel, Lovász & Schrijver's theorems

Theorem

Given R and a polynomial-time weak separation oracle for $K \subseteq B(0, R)$, we can solve the weak optimization problem in polynomial time.

Moreover, we have a converse, so that weak separation and weak optimization are essentially equivalent (w.r.t. polytime complexity):

Theorem

Given a polynomial-time weak optimization oracle for a convex set K, we can solve the weakly separation problem for K in polynomial time.

G. Sagnol 5 - Ellipsoid Methods 17 / 18

Alternative cutting-plane approaches

- Historically, the ellipsoid method was the first method that could solve a convex feasibility problem within polytime using a separation oracle.
- Total complexity:

$$O(n^2 \log \frac{R}{r}(SO + n^2))$$

- Nowadays, new cutting-planes method exist, differing on which set $E_k \supseteq K$ is maintained, and at which point x_k we query the separation oracle. In particular,
 - Inscribed ellipsoid
 - Analytic center
 - Random walk
- Best method to date [Lee, Sidford & Wong, 2015]:

$$O(n\log\frac{nR}{r}SO + n^3\log^{O(1)}\frac{nR}{r}).$$

G. Sagnol