Convex Optimization and Applications 2 - Convex geometry

Guillaume Sagnol

Outline

- 1 Using the vector notation
- 2 Convex, Affine, Conic hulls
- 3 Convex sets & convexity-preserving operations
- 4 Generalized inequalities and dual cone
- 5 Separating hyperplane theorems

$$\blacksquare [n] := \{1, \ldots, n\}$$

- $\blacksquare [n] := \{1, \ldots, n\}$
- Scalar: plain lower case, e.g. $c \in \mathbb{R}$.

- $\blacksquare [n] := \{1, \ldots, n\}$
- Scalar: plain lower case, e.g. $c \in \mathbb{R}$.
- Vectors: boldface lower case letters, e.g. $v \in \mathbb{R}^n$, with elements v_1, \ldots, v_n .

- $\blacksquare [n] := \{1, \ldots, n\}$
- Scalar: plain lower case, e.g. $c \in \mathbb{R}$.
- Vectors: boldface lower case letters, e.g. $v \in \mathbb{R}^n$, with elements v_1, \ldots, v_n .
- Matrices: upper case letters, e.g. $A \in \mathbb{R}^{m \times n}$, with elements A_{ij} ($i \in [m], j \in [n]$).

- $\blacksquare [n] := \{1, \ldots, n\}$
- Scalar: plain lower case, e.g. $c \in \mathbb{R}$.
- Vectors: boldface lower case letters, e.g. $v \in \mathbb{R}^n$, with elements v_1, \ldots, v_n .
- Matrices: upper case letters, e.g. $A \in \mathbb{R}^{m \times n}$, with elements A_{ij} ($i \in [m], j \in [n]$).
- Column decomposition of a matrix:

$$A = [\mathbf{a}_1, \dots, \mathbf{a}_n] \in \mathbb{R}^{m \times n},$$

means that $a_j \in \mathbb{R}^m$ is the *j*th column of A.

- $\blacksquare [n] := \{1, \ldots, n\}$
- Scalar: plain lower case, e.g. $c \in \mathbb{R}$.
- Vectors: boldface lower case letters, e.g. $v \in \mathbb{R}^n$, with elements v_1, \ldots, v_n .
- Matrices: upper case letters, e.g. $A \in \mathbb{R}^{m \times n}$, with elements A_{ij} ($i \in [m], j \in [n]$).
- Column decomposition of a matrix:

$$A = [\mathbf{a}_1, \dots, \mathbf{a}_n] \in \mathbb{R}^{m \times n},$$

means that $a_i \in \mathbb{R}^m$ is the *j*th column of *A*.

■ Similarly,

$$A = [\boldsymbol{a}_1, \dots, \boldsymbol{a}_m]^T \in \mathbb{R}^{m \times n}$$

means that a_i^T is the *i*th row of A (with $a_i \in \mathbb{R}^n$).

Vector notation

- $\blacksquare \mathbb{R}_+ = \{x \in \mathbb{R} : x \ge 0\}.$
- $\blacksquare \mathbb{R}_{++} = \{ x \in \mathbb{R} : x > 0 \}.$
- $\blacksquare \mathbb{S}^n = \{ X \in \mathbb{R}^{n \times n} : X = X^T \}.$
- $\mathbb{S}_{+}^{n} = \{X \in \mathbb{S}^{n} : X \text{ is positive semidefinite}\}.$
- $\mathbb{S}_{++}^n = \{X \in \mathbb{S}^n : X \text{ is positive definite}\}.$
- Elementwise inequalities: $x \le y$ means $x_i \le y_i, \forall i$

Example

If
$$A = [a_1, \dots, a_m]^T$$
, then $Ax \leq b$ means

$$a_i^T x \leq b_i \quad (\forall i \in [m]).$$

Vector notation

- $\mathbf{e}_i = i$ th standard unit vector $[0, \dots, 0, 1, 0, \dots, 0]^T$
- 1 or $\mathbf{1}_n$ = all-ones vector $[1, ..., 1]^T$ (on blackboard: 1)
- Identity matrix I or I_n
- All-ones matrix $J_n = \mathbf{1}_n \mathbf{1}_n^T$
- Diag $(u) = \begin{pmatrix} u_1 & & \\ & \ddots & \\ & & u_n \end{pmatrix}$, diag $(M) = [M_{11}, \dots, M_{nn}]^T$

Example

For $v \in \mathbb{R}^n$ and $M \in \mathbb{R}^{m \times n}$ it holds:

$$\mathbf{v}_i = \mathbf{e}_i^T \mathbf{v}$$

$$M_{ij} = e_i^T M e_j$$

Scalar products and norms

■ For $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$,

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle := \boldsymbol{u}^T \boldsymbol{v} = \sum_i u_i v_i$$

■ For $A, B \in \mathbb{R}^{m \times n}$,

$$\langle A, B \rangle := \operatorname{trace} A^T B = \sum_{i,j} A_{ij} B_{ij}$$

■ In particular, if $A, B \in \mathbb{S}^n$, it holds $\langle A, B \rangle = \operatorname{trace} AB$.

Example

- \blacksquare $\langle 1, \mathbf{v} \rangle = \mathbf{1}^T \mathbf{v}$ is the sum of all entries of \mathbf{v}
- \blacksquare $\langle J, M \rangle$ is the sum of all entries of M
- \blacksquare $\langle I, M \rangle$ is the trace of M

Scalar products and norms

- Euclidean norm $\|\mathbf{v}\| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$
- Frobenius norm of a matrix:

$$||A||_F := \sqrt{\langle A, A \rangle} = (\sum_{i,i} A_{ij}^2)^{1/2}.$$

■ The vectorization of $A = [a_1, ..., a_n] \in \mathbb{R}^{m \times n}$ is

$$\operatorname{\mathsf{vec}}(A) := \left| \begin{array}{c} a_1 \\ \vdots \\ a_n \end{array} \right| \in \mathbb{R}^{mn}.$$

Example

- $\blacksquare \langle A, B \rangle = \langle \text{vec}(A), \text{vec}(B) \rangle$
- $||A||_F = ||vec(A)||$

Affine functions

■ Affine functions mapping $\mathbb{R}^n \to \mathbb{R}$ have the form

$$x \mapsto a^T x + b$$
.

■ More generally, an affine function mapping $\mathbb{R}^n \to \mathbb{R}^m$ has the form

$$f: \mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}$$
.

for some matrix $A \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{b} \in \mathbb{R}^m$.

Affine functions

■ Affine functions mapping $\mathbb{R}^n \to \mathbb{R}$ have the form

$$x \mapsto a^T x + b$$
.

■ More generally, an affine function mapping $\mathbb{R}^n \to \mathbb{R}^m$ has the form

$$f: \mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}$$
.

for some matrix $A \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{b} \in \mathbb{R}^m$.

- f linear usually means b = 0, but we abuse the language, i.e. "linear \simeq affine"...
- To emphasize that b = 0, we say that f is a linear form

Quadratic functions

■ Quadratic functions mapping $\mathbb{R}^n \to \mathbb{R}$ have the form

$$x \mapsto x^T Q x + a^T x + b.$$

■ A quadratic form is a quadratic function without linear part, i.e., a = 0, b = 0.

Quadratic functions

■ Quadratic functions mapping $\mathbb{R}^n \to \mathbb{R}$ have the form

$$x \mapsto x^T Q x + a^T x + b.$$

- A quadratic form is a quadratic function without linear part, i.e., a = 0, b = 0.
- Homogenization: every quadratic function is a quadratic form over $\mathbb{R}^n \times \{1\}$:

$$x^T Q x + a^T x + b = \begin{bmatrix} x \\ 1 \end{bmatrix}^T \begin{pmatrix} Q & \frac{1}{2}a \\ \frac{1}{2}a^T & b \end{pmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}.$$

Gradient and Hessian

■ The gradients and hessian of (sufficiently) differentiable functions $f : \mathbb{R}^n \to \mathbb{R}$ are

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\mathbf{x}) \end{bmatrix} \in \mathbb{R}^n, \ \nabla^2 f(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{x}) & \cdots & \frac{\partial^2 f}{\partial x_2^2}(\mathbf{x}) \end{pmatrix} \in \mathbb{S}^n.$$

Example

Expressing a quadratic form...

as a linear function of the associated matrix

Lemma (aka the trace-trick).

The function $f: \mathbb{S}^n \to \mathbb{R}, \ X \mapsto \boldsymbol{u}^T X \boldsymbol{u}$ is a linear function of X. Indeed,

$$\mathbf{u}^T X \mathbf{u} = \langle X, \mathbf{u} \mathbf{u}^T \rangle.$$

proof. Recall that trace AB = trace BA (trace is invariant to cyclic permutations).

$$oldsymbol{u}^T X oldsymbol{u} = \operatorname{trace} oldsymbol{u}^T X oldsymbol{u} \qquad \text{(seen as a } 1 \times 1\text{-matrix)}$$

$$= \operatorname{trace} X oldsymbol{u} oldsymbol{u}^T \qquad \text{(cyclic permutation)}$$

$$= \langle X, oldsymbol{u} oldsymbol{u}^T \rangle \qquad \text{(note that } oldsymbol{u} oldsymbol{u}^T \text{ is an } m \times n\text{-matrix)}$$

G. Sagnol 2 - Convex geometry 11 / 44

Outline

- 1 Using the vector notation
- 2 Convex, Affine, Conic hulls
- 3 Convex sets & convexity-preserving operations
- 4 Generalized inequalities and dual cone
- 5 Separating hyperplane theorems

Lines, segments, rays

Definition (Lines, segments, rays).

Let $x_1, x_2 \in \mathbb{R}^n$.

■ The line through x_1 and x_2 is

$$\{\theta x_1 + (1-\theta)x_2 : \theta \in \mathbb{R}\}.$$

■ The segment between x_1 and x_2 is

$$\{\theta x_1 + (1-\theta)x_2 : \theta \in [0,1]\}.$$

■ The ray through x_1 is

$$\{\theta x_1: \theta \geq 0\}.$$

Definition (Affine, Convex, and Conic sets).

Let *S* be a subset of \mathbb{R}^n .

■ *S* is *affine* if contains all lines joining points of *S*:

$$x_1, x_2 \in S, \theta \in \mathbb{R} \implies \theta x_1 + (1 - \theta)x_2 \in S.$$

Definition (Affine, Convex, and Conic sets).

Let *S* be a subset of \mathbb{R}^n .

■ *S* is *affine* if contains all lines joining points of *S*:

$$x_1, x_2 \in S, \theta \in \mathbb{R} \implies \theta x_1 + (1 - \theta)x_2 \in S.$$

■ *S* is *convex* if contains all segments joining points of *S*:

$$x_1, x_2 \in S, \theta \in [0,1] \implies \theta x_1 + (1-\theta)x_2 \in S.$$

Definition (Affine, Convex, and Conic sets).

Let *S* be a subset of \mathbb{R}^n .

■ *S* is affine if contains all lines joining points of *S*:

$$x_1, x_2 \in S, \theta \in \mathbb{R} \implies \theta x_1 + (1 - \theta)x_2 \in S.$$

■ *S* is *convex* if contains all segments joining points of *S*:

$$x_1, x_2 \in S, \theta \in [0,1] \implies \theta x_1 + (1-\theta)x_2 \in S.$$

■ *S* is a *cone* if contains the ray through any point of *S*:

$$x \in S, \theta \ge 0 \implies \theta x \in S.$$

Definition (Affine, Convex, and Conic sets).

Let *S* be a subset of \mathbb{R}^n .

■ *S* is *affine* if contains all lines joining points of *S*:

$$x_1, x_2 \in S, \theta \in \mathbb{R} \implies \theta x_1 + (1 - \theta)x_2 \in S.$$

■ *S* is *convex* if contains all segments joining points of *S*:

$$x_1, x_2 \in S, \theta \in [0,1] \implies \theta x_1 + (1-\theta)x_2 \in S.$$

■ *S* is a *cone* if contains the ray through any point of *S*:

$$x \in S, \theta \ge 0 \implies \theta x \in S.$$

■ *S* is a convex *cone* if:

$$\mathbf{x}_1, \mathbf{x}_2 \in S, \lambda_1, \lambda_2 \geq 0 \implies \lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 \in S.$$

Affine, Convex, Conic combinations

More generally, we can combine more than 2 points

Definition (Affine, Convex, Conic combinations).

Let
$$x_i \in \mathbb{R}^n$$
 ($\forall i \in [k]$). The expression $\sum_{i=1}^k \lambda_i x_i$ is called

- an affine combination of the $x_i's$ if $\sum_i \lambda_i = 1$.
- lacksquare a convex combination of the $x_i's$ if $\sum_{i=1}^{j} \lambda_i = 1$, $\lambda \geq 0$.
- \blacksquare a conic combination of the $x_i's$ if $\lambda \geq 0$.

Affine, Convex, Conic combinations

More generally, we can combine more than 2 points

Definition (Affine, Convex, Conic combinations).

Let
$$x_i \in \mathbb{R}^n$$
 ($\forall i \in [k]$). The expression $\sum_{i=1}^k \lambda_i x_i$ is called

- lacksquare an affine combination of the $x_i's$ if $\sum_i \lambda_i = 1$.
- lacksquare a convex combination of the $x_i's$ if $\sum_{i=1}^{j} \lambda_i = 1$, $\lambda \geq 0$.
- \blacksquare a conic combination of the $x_i's$ if $\lambda \geq 0$.

Proposition

A set is affine/convex/a convex cone iff it is stable by affine/convex/conic combinations.

G. Sagnol

Affine, Convex, Conic hull

Definition (Affine, Convex, and Conic hull).

■ The vector space spanned by $S \subseteq \mathbb{R}^n$ is:

span
$$S = \{\sum_{i=1}^{k} \lambda_i x_i : k \in \mathbb{N}, \forall i \in [k], x_i \in S, \lambda \in \mathbb{R}^k \}.$$

■ The affine hull of S is:

aff
$$S = \{ \sum_{i=1} \lambda_i \mathbf{x}_i : k \in \mathbb{N}, \forall i \in [k], \mathbf{x}_i \in S, \ \boldsymbol{\lambda} \in \mathbb{R}^k, \ \mathbf{1}^T \boldsymbol{\lambda} = 1 \}.$$

■ The convex hull of S is:

$$\mathsf{conv}\, S = \{ \sum \lambda_i x_i : \ k \in \mathbb{N}, \ \forall i \in [k], x_i \in S, \ \boldsymbol{\lambda} \geq \boldsymbol{0}, \ \boldsymbol{1}^{\mathsf{T}} \boldsymbol{\lambda} = 1 \}.$$

■ The conic hull of S is:

cone
$$S = \{ \sum \lambda_i x_i : k \in \mathbb{N}, \quad \forall i \in [k], x_i \in S, \quad \lambda \geq 0 \}.$$

G. Sagnol

Affine, Convex, Conic hull

The previous hull definitions coincinde with the intuitive meaining of *hull*:

That is, the affine (convex, conic hull) of S is the smallest affine set (convex set, convex cone) that contains S.

G. Sagnol 2 - Convex geometry 17 / 44

Characterization of affine spaces

Affine spaces are vector spaces plus a shift:

Proposition

Let L be an affine space, and $x_0 \in L$. Then, $V = L - x_0$ is a vector space, and does not depend on the choice of x_0 . Hence we can define dim $L := \dim V$.

Using the fact that we can write $V = \operatorname{Im} A$ or $V = \operatorname{Ker} F$,

Proposition

L is an affine subspace of \mathbb{R}^n of dimension $m \leq n$

$$\iff L = \{Ay + b : y \in \mathbb{R}^m\} \text{ for some } A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n.$$

$$\iff L = \{ \mathbf{x} \in \mathbb{R}^n : F\mathbf{x} = \mathbf{g} \} \text{ for some } F \in \mathbb{R}^{m \times n}, \mathbf{g} \in \mathbb{R}^m \}.$$

G. Sagnol 2 - Convex geometry 18 / 44

Caratheodory theorem

Recall the definition of a convex hull:

conv
$$S = \{ \sum_{i=1}^{k} \lambda_i x_i : k \in \mathbb{N}, \forall i \in [k], x_i \in S, \lambda \geq 0, \mathbf{1}^T \lambda = 1 \}.$$

$$= \left\{ x \in \mathbb{R}^n : \text{ } x \text{ is convex combination of } k \text{ elements } \right\}.$$

Can we bound the number k of elements of S we need to combine to get any elements of conv S?

Caratheodory theorem

Recall the definition of a convex hull:

conv
$$S = \{ \sum_{i=1}^{k} \lambda_i x_i : k \in \mathbb{N}, \forall i \in [k], x_i \in S, \lambda \geq 0, \mathbf{1}^T \lambda = 1 \}.$$

$$= \left\{ x \in \mathbb{R}^n : x \text{ is convex combination of } k \text{ elements of S, for some } k \in \mathbb{N} \right\}.$$

Can we bound the number k of elements of S we need to combine to get any elements of conv S?

Theorem (Caratheodory).

Let $S \subseteq \mathbb{R}^n$ be of affine dimension $m := \dim \operatorname{aff} S \le n$, and $x \in \operatorname{conv} S$. Then, x can be expressed as a convex combination of $k \le m+1$ points of S.

G. Sagnol 2 - Convex geometry 19 / 44

Caratheodory theorem

Theorem (Caratheodory).

Let $S \subseteq \mathbb{R}^n$ be of affine dimension $m := \dim \operatorname{aff} S \le n$, and $x \in \operatorname{conv} S$. Then, x can be expressed as a convex combination of $k \le m+1$ points of S.

There is also an analog result for conic hulls:

Theorem (Caratheodory - conic version).

Let $S \subseteq \mathbb{R}^n$, such that dim span $S = m \le n$, and let $x \in \text{cone } S$. Then, x can be expressed as a conic combination of $k \le m \le n$ points of S.

G. Sagnol 2 - Convex geometry 20 / 44

Outline

- 1 Using the vector notation
- 2 Convex, Affine, Conic hulls
- 3 Convex sets & convexity-preserving operations
- 4 Generalized inequalities and dual cone
- 5 Separating hyperplane theorems

Simple convex sets

$$1 Hyperplane: $\{x : a^T x = b\}$$$

(affine, convex)

Simple convex sets

1 $Hyperplane: <math>\{x : a^T x = b\}$

2 $Halfspace: <math>\{x : a^T x \leq b\}$

(affine, convex)

(convex)

Simple convex sets

- 1 Hyperplane: $\{x : a^T x = b\}$
- \blacksquare Polytope: conv $\{x_1,\ldots,x_k\}$

- (affine, convex)
 - (convex)
 - (convex)

- **2** $Halfspace: <math>\{x: a^T x \leq b\}$
- \blacksquare Polytope: conv $\{x_1,\ldots,x_k\}$
- Polyhedron: $\{x : Ax \leq b\}$

- (affine, convex)
 - (convex)
 - (convex)
 - (convex)

- **1** $Hyperplane: <math>\{x : a^T x = b\}$
- 2 Halfspace: $\{x : a^T x \leq b\}$
- \blacksquare Polytope: conv $\{x_1,\ldots,x_k\}$
- Polyhedron: $\{x : Ax \leq b\}$
- 5 Ball: $\{x : ||x x_0|| \le r\}$

- (affine, convex)
 - (convex)
 - (convex)
 - (convex)
- (convex, for any norm)

- 1 Hyperplane: $\{x : a^T x = b\}$ (affine, convex) 2 Halfspace: $\{x : a^T x \le b\}$ (convex) 3 Polytope: conv $\{x_1, \dots, x_k\}$ (convex) 4 Polyhedron: $\{x : Ax \le b\}$ (convex)
- **5** Ball: $\{x: ||x-x_0|| \le r\}$ (convex, for any norm)
- Norm cone: $\{(x, t) : ||x x_0|| \le t\}$ (convex, for any norm)

- 1 Hyperplane: $\{x : a^T x = b\}$ (affine, convex) 2 Halfspace: $\{x : a^T x < b\}$ (convex)
- Polytope: conv $\{x_1, \dots, x_k\}$ (convex)
- Polyhedron: $\{x : Ax \le b\}$ (convex)
- **5** Ball: $\{x: ||x-x_0|| \le r\}$ (convex, for any norm)
- Norm cone: $\{(x, t) : ||x x_0|| \le t\}$ (convex, for any norm)
- Unit simplex: $\Delta_n := \{x \in \mathbb{R}^n : x \geq 0, \ \mathbf{1}^T x \leq 1\}$

- 1 Hyperplane: $\{x : \mathbf{a}^T x = b\}$ (affine, convex)
- 2 Halfspace: $\{x : a^T x \le b\}$ (convex)
- Polyhedron: $\{x : Ax \le b\}$ (convex)
- **5** Ball: $\{x: ||x-x_0|| \le r\}$ (convex, for any norm)
- Norm cone: $\{(x, t) : ||x x_0|| \le t\}$ (convex, for any norm)
- Unit simplex: $\Delta_n := \{x \in \mathbb{R}^n : x \geq 0, \ \mathbf{1}^T x \leq 1\}$
- B Probability simplex: $\Delta_n^{=} := \{x \in \mathbb{R}^n : x \geq 0, \ \mathbf{1}^T x = 1\}$

- **1** Hyperplane: $\{x : a^T x = b\}$ (affine, convex)
- 2 Halfspace: $\{x : a^T x \le b\}$ (convex)
- Polyhedron: $\{x : Ax \le b\}$ (convex)
- **5** Ball: $\{x: ||x-x_0|| \le r\}$ (convex, for any norm)
- Norm cone: $\{(x, t) : ||x x_0|| \le t\}$ (convex, for any norm)
- Unit simplex: $\Delta_n := \{x \in \mathbb{R}^n : x \geq 0, \ \mathbf{1}^T x \leq 1\}$
- **B** Probability simplex: $\Delta_n^- := \{x \in \mathbb{R}^n : x \geq 0, \mathbf{1}^T x = 1\}$
- Nonnegative orthant: \mathbb{R}^n_+ (convex cone)

- Hyperplane: $\{x : a^T x = b\}$ (affine, convex)
- 2 Halfspace: $\{x : a^T x \le b\}$ (convex)
- Polyhedron: $\{x : Ax \le b\}$ (convex)
- **5** Ball: $\{x: \|x-x_0\| \le r\}$ (convex, for any norm)
- Norm cone: $\{(x, t) : ||x x_0|| \le t\}$ (convex, for any norm)
- Unit simplex: $\Delta_n := \{x \in \mathbb{R}^n : x \geq 0, \ \mathbf{1}^T x \leq 1\}$
- Probability simplex: $\Delta_n^{=} := \{ x \in \mathbb{R}^n : x \geq \mathbf{0}, \ \mathbf{1}^T x = 1 \}$
- Symmetric matrices: \mathbb{S}^n (vector space of dim. $\frac{1}{2}n(n+1)$)

Operations that preserve convexity

Let S, T be convex sets. Then, the following sets are convex:

1
$$S \cap T$$
 (also valid for intersection of infinite families)
2 $S \times T$ (cartesian product)
3 $\{Ax + b : x \in S\}$ (affine transformation of S)
• ρS (scaling)
• $S + b$ (translation)
• $\{(x_1, \dots, x_k) : x \in S\}$ (projection over some coordinates)

$$S + T$$
 (Minkowski sum)

$$\{x: Ax + b \in S\}$$
 (Reverse affine transformation)

6 cl S and int S (Closure and Interior)

G. Sagnol 2 - Convex geometry 23 / 44

Perspective transformation

Define the perspective function

$$P: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n, \qquad (x,t) \mapsto \frac{x}{t}.$$

If $S \subseteq \mathbb{R}^n$ is convex, then $P^{-1}(S) := \{(x,t) \in \mathbb{R}^n \times \mathbb{R}_{++} : \frac{1}{t}x \in S\}$ is convex. Its closure is cl $P^{-1}(S) = \operatorname{cone}(S \times \{1\})$.

$$S = \{ {m x} : \| {m x} \| \leq 1 \}$$
 (unit ball)

Perspective transformation

Define the perspective function

$$P: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n, \qquad (x,t) \mapsto \frac{x}{t}.$$

If $S \subseteq \mathbb{R}^n$ is convex, then $P^{-1}(S) := \{(x, t) \in \mathbb{R}^n \times \mathbb{R}_{++} : \frac{1}{t}x \in S\}$ is convex. Its closure is cl $P^{-1}(S) = \operatorname{cone}(S \times \{1\})$.

$$S = \{x : ||x|| \le 1\}$$
 (unit ball)

$$P^{-1}(S) = \{(x, t) : ||x|| \le t, t > 0\}$$

$$\mathsf{cl}\,P^{-1}(S) = \{(x,t) : \|x\| \le t\}$$

(Lorentz cone)

Positive semidefinite matrices

Proposition / Definition

Let $X \in \mathbb{S}^n$. The following statements are equivalent:

- **■** $X \in \mathbb{S}_+^n$ (S is positive semidefinite)
- $\mathbf{2} \ \forall \mathbf{u} \in \mathbb{R}^n, \mathbf{u}^T X \mathbf{u} \geq 0.$
- \blacksquare All eigenvalues of X are nonnegative.
- $\exists H \in \mathbb{R}^{n \times m}, m \in \mathbb{N} : X = HH^T$
- $X \in \operatorname{conv} \{ xx^T : x \in \mathbb{R}^n \} = \operatorname{cone} \{ xx^T : x \in \mathbb{R}^n \}.$

In particular, \mathbb{S}^n_+ is a convex cone.

Positive semidefinite matrices

Proposition / Definition

Let $X \in \mathbb{S}^n$. The following statements are equivalent:

- $X \in \mathbb{S}^n_+$ (S is positive semidefinite)
- $\forall \boldsymbol{u} \in \mathbb{R}^n, \boldsymbol{u}^T X \boldsymbol{u} > 0.$
- All eigenvalues of X are nonnegative.
- $\exists H \in \mathbb{R}^{n \times m}, m \in \mathbb{N} : X = HH^T$
- $X \in \mathsf{conv}\{xx^T : x \in \mathbb{R}^n\} = \mathsf{cone}\{xx^T : x \in \mathbb{R}^n\}.$

In particular, \mathbb{S}^n_+ is a convex cone.

Other, direct proof of the convexity of \mathbb{S}_{+}^{n} :

$$\mathbb{S}_{+}^{n} = \{X : \boldsymbol{u}^{T} X \boldsymbol{u} \geq 0, \forall \boldsymbol{u} \in \mathbb{R}^{n}\} = \{X : \langle X, \boldsymbol{u} \boldsymbol{u}^{T} \rangle \geq 0, \forall \boldsymbol{u} \in \mathbb{R}^{n}\}$$

$$= \bigcap_{\substack{\boldsymbol{u} \in \mathbb{R}^{n} \\ 2 \text{ - Convex geometry}}} \{X \in \mathbb{S}^{n} : \langle X, \boldsymbol{u} \boldsymbol{u}^{T} \rangle \geq 0\}$$
G. Sagnol

G. Sagnol

Positive definite matrices

The interior of \mathbb{S}^n_+ is also a cone:

Proposition / Definition

Let $X \in \mathbb{S}^n$. The following statements are equivalent:

- $X \in \mathbb{S}_{++}^n$ (S is positive definite)
- $X \in \operatorname{int} \mathbb{S}^n_+$
- $\forall \boldsymbol{u} \in \mathbb{R}^n, \quad \boldsymbol{u} \neq \boldsymbol{0} \implies \boldsymbol{u}^T X \boldsymbol{u} > 0.$
- 4 All eigenvalues of X are positive.
- $\exists H$ invertible such that $X = HH^T$.
- Sylvester criterion: All leading principal minors of *X* are positive.

Properties of p.s.d. matrices

Lemma

Let $X \in \mathbb{S}^n_+$. Then,

- 1 The matrix AXA^T is positive semidefinite (for all A of appropriate size).
- If I is a subset of [n], the principal submatrix

$$X[I,I] = \{X_{i_1,i_2}\}_{i_1 \in I, i_2 \in I}$$

is positive semidefinite.

Matrix decompositions

Proposition (Matrix square root).

Let $X \in \mathbb{S}^n_+$. Then, X has a square root, which we denote by $X^{\frac{1}{2}} \in \mathbb{S}^n_+$, and is the only positive semidefinite matrix that satisfies

$$X = \left(X^{\frac{1}{2}}\right)^2.$$

In particular, the eigenvalues of $X^{\frac{1}{2}}$ are the square roots of the eigenvalues of X.

Proposition (Cholesky decomposition).

 $X \in \mathbb{S}^n_+$ admits a *Cholesky decomposition* of the form $X = LL^T$, where L is lower triangular.

If *X* is positive definite, then this decomposition is unique.

G. Sagnol 2 - Convex geometry 28 / 44

Ellipsoids

Definition (Ellipsoid)

An ellipsoid of \mathbb{R}^n is a set of the form

$$\mathcal{E} = \{ x \in \mathbb{R}^n : (x - x_0)^T Q^{-1} (x - x_0) \le 1 \},$$

where $x_0 \in \mathbb{R}^n$ and the matrix Q is positive definite.

All ellipsoids can be obtained as the **affine transformation** (or reverse image by some affine transformation) of a **unit ball**. Indeed,

$$\mathcal{E} = \{ \mathbf{x} \in \mathbb{R}^n : \| Q^{-1/2} \mathbf{x} - Q^{-1/2} \mathbf{x}_0 \| \le 1 \}$$
$$= \{ Q^{1/2} \mathbf{y} + \mathbf{x}_0 : \| \mathbf{y} \| \le 1 \}$$

G. Sagnol

Ellipsoids vs. eigenvalue decomposition

$$\mathcal{E} = \{ x \in \mathbb{R}^n : (x - x_0)^T Q^{-1} (x - x_0) \le 1 \}$$

Consider eigendecomposition $Q = U \Lambda U^T = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^T$.

Then, \mathcal{E} is an elliposid centered at x_0 , with semiaxis of length $\sqrt{\lambda_i}$ along u_i .

G. Sagnol 2 - Convex geometry 30 / 44

Outline

- 1 Using the vector notation
- 2 Convex, Affine, Conic hulls
- 3 Convex sets & convexity-preserving operations
- 4 Generalized inequalities and dual cone
- 5 Separating hyperplane theorems

Proper cone

Definition (Proper cone).

A cone $K \subset \mathbb{R}^n$ is said to be *proper* if it is

- closed;
- convex;

G. Sagnol

pointed, i.e., it contains no lines. More precisely,

$$(x \in K, -x \in K) \implies x = 0;$$

and it has a nonempty interior.

not pointed
2 - Convex geometry

Generalized conic inequality

■ Given a proper cone K, we define a partial order \leq_K :

$$x \leq_K y \iff y - x \in K$$
.
 $x \prec_K y \iff y - x \in \text{int } K$.

Note: For matrices, $X \succeq Y$ means $X \succeq_{\mathbb{S}^n_+} Y$. In particular, $X \succeq 0$ means that X is positive semidefinite.

G. Sagnol 2 - Convex geometry 33 / 44

Properties of conic ordering

Proposition

Let K be a proper cone. The inequality \leq_K satisfies:

- 1 transitivity: $x \leq_K y$ and $y \leq_K z \implies x \leq_K z$
- 2 reflexivity: $x \leq_K x$.
- 3 antisymmetry: $x \leq_K y$ and $y \leq_K x \implies x = y$.
- 4 preservation under addition:

$$x \leq_K y$$
 and $u \leq_K v \implies x + u \leq_K y + v$.

preservation under nonnegative scaling: $x \prec_{\kappa} y$ and $\alpha > 0 \implies \alpha x \prec_{\kappa} \alpha y$.

Note that $\leq_{\mathcal{K}}$ is a partial order, i.e.,

$$x \npreceq_{\mathcal{K}} y \iff x \succeq_{\mathcal{K}} y.$$

Examples

 $\blacksquare \preceq_{\mathbb{R}^n_+}$ is simply the standard elementwise inequality:

$$x \leq_{\mathbb{R}^n_+} y \iff x \leq y$$
.

Note that
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ are not comparable for $\leq_{\mathbb{R}_+^n}$.

Examples

■ $\leq_{\mathbb{R}^n_+}$ is simply the standard elementwise inequality:

$$x \leq_{\mathbb{R}^n_+} y \iff x \leq y$$
.

Note that $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ are not comparable for $\leq_{\mathbb{R}_+^n}$.

■ Let $K \subset \mathbb{R}^{d+1}$ be the cone of coefficients of polynomials of degree d that are nonnegative on [0,1]:

$$K = \{ \boldsymbol{\alpha} \in \mathbb{R}^{d+1} : \forall x \in [0,1], \sum_{i=0}^{d} \alpha_i x^i \geq 0 \}.$$

Then,

$$\boldsymbol{\alpha} \preceq_{\mathsf{K}} \boldsymbol{\beta} \iff \forall x \in [0,1], \quad \sum_{i=0}^{d} \alpha_{i} x^{i} \leq \sum_{i=0}^{d} \beta_{i} x^{i}$$

G. Sagnol 2 -

Definition (Dual cone).

The dual cone of K is

$$K^* = \{ y | \langle x, y \rangle \ge 0, \ \forall x \in K \}.$$

Definition (Dual cone).

The dual cone of K is

$$K^* = \{y | \langle x, y \rangle \ge 0, \ \forall x \in K\}.$$

Definition (Dual cone).

The dual cone of K is

$$K^* = \{ y | \langle x, y \rangle \ge 0, \ \forall x \in K \}.$$

36 / 44

G. Sagnol 2 - Convex geometry

A fundamental result

Proposition

Let *K* be a cone. Then,

$$\inf_{\mathbf{x} \in K} \mathbf{c}^{\mathsf{T}} \mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{c} \in K^* \\ -\infty & \text{otherwise.} \end{cases}$$

Similarly,

$$\sup_{\mathbf{x} \in K} \mathbf{c}^{\mathsf{T}} \mathbf{x} = \begin{cases} 0 & \text{if } \mathbf{c} \in -K^* \\ +\infty & \text{otherwise.} \end{cases}$$

Proposition (Properties of the dual cone).

Let K be a convex cone.

- \mathbf{I} K^* is a convex cone.
- \mathbb{Z} K^* is closed (even if K is not).
- $\exists K_1 \subseteq K_2 \implies K_2^* \subseteq K_1^*.$
- \blacktriangle K has a nonempty interior \implies K* pointed.
- **5** $K^{**} = \operatorname{cl} K$ (so, in particular, K closed $\Longrightarrow K = K^{**}$).
- **6** cl K is pointed $\implies K^*$ has a nonempty interior.

In particular,

K proper $\implies K^*$ proper, and $K = (K^*)^*$.

Outline

- 1 Using the vector notation
- 2 Convex, Affine, Conic hulls
- 3 Convex sets & convexity-preserving operations
- 4 Generalized inequalities and dual cone
- 5 Separating hyperplane theorems

Separating hyperplane theorem

If two convex sets do not intersect, then they can be separated by some hyperplane:

Theorem (Separating hyperplane).

Let X, Y be two disjoint, nonempty convex sets of \mathbb{R}^n . Then, there $\exists c \in \mathbb{R}$, $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that

$$\forall x \in X, \langle x, v \rangle \leq c \text{ and } \forall y \in Y, \langle y, v \rangle \geq c.$$

In other words, the hyperplane $\{x : \langle x, \mathbf{v} \rangle = c\}$ separates X and Y.

Strict separation

When, in addition, both sets are closed and one of them is compact, it is possible to separate them *strictly*:

Theorem (Strict separating hyperplane).

Let X, Y be disjoint, nonempty, closed convex sets of \mathbb{R}^n . If X or Y is compact, then $\exists c \in \mathbb{R}$, $\mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that

$$\forall x \in X, \langle x, v \rangle < c \text{ and } \forall y \in Y, \langle y, v \rangle > c.$$

In other words, the hyperplane $\{x : \langle x, v \rangle = c\}$ strictly separates X and Y.

Separation theorem for a cone

When one of the two sets is a cone, we can set c = 0:

Theorem (Separating hyperplane for a cone).

Let $C \subseteq \mathbb{R}^n$ be a nonempty convex cone, and $Y \subseteq \mathbb{R}^n$ be a nonempty convex set which does not intersect C. Then, $\exists v \in \mathbb{R}^n \setminus \{0\}$ such that

$$\forall x \in C, \langle x, v \rangle \leq 0$$
 and $\forall y \in Y, \langle y, v \rangle \geq 0$.

If in addition, *C* is closed and *Y* is compact, then:

$$\exists v \in \mathbb{R}^n : \forall x \in C, \langle x, v \rangle \leq 0 \quad \text{and} \quad \forall y \in Y, \langle y, v \rangle > 0.$$

Separation theorem for a cone

When one of the two sets is a cone, we can set c = 0:

Theorem (Separating hyperplane for a cone).

Let $C \subseteq \mathbb{R}^n$ be a nonempty convex cone, and $Y \subseteq \mathbb{R}^n$ be a nonempty convex set which does not intersect C. Then, $\exists v \in \mathbb{R}^n \setminus \{0\}$ such that

$$\forall x \in C, \langle x, v \rangle \leq 0$$
 and $\forall y \in Y, \langle y, v \rangle \geq 0$.

If in addition, *C* is closed and *Y* is compact, then:

$$\exists \mathbf{v} \in \mathbb{R}^n : \forall \mathbf{x} \in C, \ \langle \mathbf{x}, \mathbf{v} \rangle \leq 0 \quad \text{and} \quad \forall \mathbf{y} \in Y, \ \langle \mathbf{y}, \mathbf{v} \rangle > 0.$$

In particular, if C is a closed convex cone and $y \notin C$,

$$\exists \mathbf{v} \in \mathbb{R}^n : \forall \mathbf{x} \in C, \langle \mathbf{x}, \mathbf{v} \rangle \leq 0 \text{ and } \langle \mathbf{y}, \mathbf{v} \rangle > 0.$$

G. Sagnol

Supporting hyperplane

A hyperplane separating S from some $y \notin S$ is called a supporting hyperplane if it touches S:

Definition (Supporting hyperplane).

Let $S \subseteq \mathbb{R}^n$ be nonempty, $\mathbf{a} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $b \in \mathbb{R}$. We say that $H = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} = b\}$ is a supporting hyperplane of S if

■ *S* is contained in one of the two halfspaces defined by *H*, i.e,

$$\forall x \in S, \ \mathbf{a}^T x < b \quad \text{or} \quad \forall x \in S, \ \mathbf{a}^T x > b.$$

■ *S* has at least one boundary point on the hyperplane, i.e., $H \cap \partial S \neq \emptyset$, where $\partial S := \operatorname{cl} S \setminus \operatorname{int} S$ is the boundary of *S*.

Supporting hyperplane theorem

Theorem (Supporting hyperplane).

Let S be a convex set and x_0 be a boundary point of S. Then, S has a supporting hyperplane at x_0 , that is,

$$\exists a \in \mathbb{R}^n \setminus \{0\} : \forall x \in S, \ a^T x \leq a^T x_0.$$

Conversely, if S is closed, has nonempty interior, and has (at least) one supporting hyperplane in each of its boundary points, then S is convex.