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Scalars, vectors, matrices

m[n]:={1,...,n}
m Scalar: plain lower case, e.g. ¢ € R.

m Vectors: boldface lower case letters, e.g. v € R", with
elements vq,..., v,.

m Matrices: upper case letters, e.g. A € R™*", with
elements A; (i € [m], j € [n]).

m Column decomposition of a matrix:
A=lay,...,a,] € R™",

means that a; € R™ is the jth column of A.

m Similarly,
A=lay,...,a," € R™"

means that a; is the ith row of A (with a; € R").
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Vector notation

m R, ={xeR:x>0}
.R++:{X€RX>O}.

S ={XeR™ X=X}
m ST = {X €8§": X is positive semidefinite}.
m ST, ={X €8": Xis positive definite}.

m Elementwise inequalities: x < y means x; < y;, Vi

If A=[ay,...,an]", then Ax < b means

ax <b; (Vie[m]).
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Vector notation

m e; = ith standard unit vector [0,...,0,1,0,...,0]"

= 1or1,=all-ones vector [1,...,1]" (on blackboard: 1)
m |dentity matrix / or /,

= All-ones matrix J, = 1,17

m Diag(u) = ( ),diag(M):[Mn,...,Mnn]T

uy

Un

For v e R"and M € R™*" it holds:
m v = e,-Tv
m M; = e/ Me;
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Scalar products and norms

m Foru,veR",
<U7 V> = UTV = Z u;v;
m For A,B € R™",
(A, B) :=trace ATB = ZAUBU
i

m In particular, if A, B € S”, it holds (A, B) = trace AB.

® (1,v) =17 vis the sum of all entries of v
m (J, M) is the sum of all entries of M
m (I, M) is the trace of M
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Scalar products and norms

m Euclidean norm ||v|| := /(v, v)
m Frobenius norm of a matrix:

Al = - (A

m The vectorization of A = [ay, ..., a,,] e R™"is

a1

vec(A) = [ ;

an

m (A, B) = (vec(A),vec(B))
= [|Allr = [vec(A)]

e R™
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Affine functions

m Affine functions mapping R” — R have the form
x+—a'x+b.

® More generally, an affine function mapping R” — R™
has the form
f:x— Ax+b.

for some matrix A € R™*" and a vector b € R™.
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Affine functions

m Affine functions mapping R” — R have the form
x+—a'x+b.

® More generally, an affine function mapping R” — R™
has the form
f:x— Ax+b.

for some matrix A € R™*" and a vector b € R™.

m f linear usually means b = 0, but we abuse the
language, i.e. “linear~affine”...

m To emphasize that b = 0, we say that f is a linear form
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Quadratic functions

® Quadratic functions mapping R” — R have the form
x—x ' Qx+a’x+b.

®m A quadratic form is a quadratic function without linear
part,i.e., a=0,b=0.
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Quadratic functions

® Quadratic functions mapping R” — R have the form
x—x ' Qx+a’x+b.

®m A quadratic form is a quadratic function without linear
part,i.e., a=0,b=0.

® Homogenization: every quadratic function is a
quadratic form over R" x {1}:

T Q =
xTQx+aTx+b:{X] 1 2° [X}
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Gradient and Hessian

m The gradients and hessian of (sufficiently)

differentiable functions f : R" — R are
2f

of O?f
2 ) A T
Vi) = | | eRr" VF(x) = S s
of o%f 0*f
aixn(X) OxnOxy () - Ox? (x)

mVix—a'x)=a
mVi(x—a'x)=0cS"

m V(x— %XTQX) = Qx

n V2(x — %XTQX) = Q.
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Expressing a quadratic form...

as a linear function of the associated matrix

Lemma (aka the trace-trick).

The function f : S” — R, X — u” Xu is a linear function of
X. Indeed,

u"Xu=(X,uu").
proof. Recall that trace AB = trace BA (trace is invariant to

cyclic permutations).

u” Xu =traceu" Xu (seen as a 1 x 1-matrix)
= trace Xuu' (cyclic permutation)
= (X,uu") (note that uu™ is an m x n-matrix)
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Outline

Convex, Affine, Conic hulls
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Lines, segments, rays

Definition (Lines, segments, rays).

Let x;, x, € R".
m The line through x; and x- is

{0x1+(1—0)xy: 0 € R},
m The segment between x; and x; is
{0x1+ (1 —0)x,: 6 €][0,1]}.
m The ray through x; is

{0x1:60>0}.
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Affine, Convex, Conic

Definition (Affine, Convex, and Conic sets).

Let S be a subset of R”.

m S is affine if contains all lines joining points of S:

x1,x2 €5, 0eR — 0X1+(1—«9)X2€5.

G. Sagnol 2 - Convex geometry 14/ 44



Affine, Convex, Conic

Definition (Affine, Convex, and Conic sets).

Let S be a subset of R”.

m S is affine if contains all lines joining points of S:

x1,x2 €5, 0eR — 9X1+(1—«9)X2€5.

m S is convex if contains all segments joining points of S:

X1,x2€ 5,0 €[0,1] = 0x1+(1—0)x2€8S.

G. Sagnol 2 - Convex geometry 14/ 44



Affine, Convex, Conic

Definition (Affine, Convex, and Conic sets).
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Affine, Convex, Conic

Definition (Affine, Convex, and Conic sets).
Let S be a subset of R”.

m S is affine if contains all lines joining points of S:

x1,x2 €5, 0eR — 9X1+(1—«9)X2€5.

m S is convex if contains all segments joining points of S:

X1,x2€ 5,0 €[0,1] = 0x1+(1—0)x2€8S.
m S is a cone if contains the ray through any point of S:

xe€S,0>0 = OxeS.

m S is a convex cone if:
X1,X2 €S, A, >0 = Aix1+ Aoxp €S.
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Affine, Convex, Conic combinations

More generally, we can combine more than 2 points

Definition (Affine, Convex, Conic combinations).

k
Let x; € R" (Vi € [k]). The expression Z \ix; is called
i=1

® an dffine combination of the x’s if Z A= 1.

1]
m a convex combination of the x's if Z Ai=1,x2>0.

® a conic combination of the x’s if X zl 0.
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Affine, Convex, Conic combinations

More generally, we can combine more than 2 points

Definition (Affine, Convex, Conic combinations).
k

Let x; € R" (Vi € [k]). The expression Z \ix; is called
i=1

® an dffine combination of the x’s if Z A= 1.

1]
m a convex combination of the x's if Z Ai=1,x2>0.

i
® a conic combination of the xs if X > 0.

Proposition

A set is affine/convex/a convex cone iff it is stable by
affine/convex/conic combinations.
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Affine, Convex, Conic hull

Definition (Affine, Convex, and Conic hull).

m The vector space spanned by S C R” is:
k

spanS ={> Aixj: keN, Vie[k],xieS, XeRF}.
i=1
m The daffine hull of S is:
k

affS={) A\ixj: keN,Vie[k],x;e S, \e R 1TA=1}.
i=1
m The convei< hull of S is:

convS ={> \ixj: keN, Vie[kl,x;€ S, x>0, 1TA=1}.
i=1

m The conic ‘P()ull of S is:

coneS={> \ixj: keN, Vie[k,x;eS, A>0}

i=1
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Affine, Convex, Conic hull

The previous hull definitions coincinde with the intuitive
meaining of hull:

Proposition
aff /conv /cone S = ﬂ T

TDS
T affine/convex/convex cone

That is, the affine (convex, conic hull) of S is the smallest
affine set (convex set, convex cone) that contains S.
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Characterization of affine spaces

Affine spaces are vector spaces plus a shift:

Proposition

Let L be an affine space, and xo € L. Then, V =L — xgisa
vector space, and does not depend on the choice of x.
Hence we can define dim L := dim V.

Using the fact that we can write V = Im Aor V = Ker F,

Proposition

L is an affine subspace of R” of dimension m < n
< L={Ay+b: y € R"} forsome Ac R™" becR"
< L={xeR":Fx=g}forsome F ¢ R™" g € R"}.
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Caratheodory theorem

Recall the definition of a convex hull:

k
convS={> Aixi: keN,Vie[k,x;e S, A>0,1"A=1}.

i=1

B cRr: X is convex combination of k elements
" " of S, forsome k € N ‘

Can we bound the number k of elements of S we need to
combine to get any elements of conv S ?
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Recall the definition of a convex hull:

k
convS={> Aixi: keN,Vie[k,x;e S, A>0,1"A=1}.

i=1
_Jyepr. X is convex combination of k elements
- " of S, forsome k € N ‘

Can we bound the number k of elements of S we need to
combine to get any elements of conv S ?

Theorem (Caratheodory).

Let S C R" be of affine dimension m := dimaff S < n, and
x € conv S. Then, x can be expressed as a convex
combination of k < m + 1 points of S.
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Caratheodory theorem

Theorem (Caratheodory).

Let S C R” be of affine dimension m := dimaff S < n, and
x € conv S. Then, x can be expressed as a convex
combination of kK < m + 1 points of S.

There is also an analog result for conic hulls:

Theorem (Caratheodory - conic version).

Let S C R”", such that dimspan S = m < n, and let
x € cone S. Then, x can be expressed as a conic
combination of k < m < n points of S.
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Outline

Convex sets & convexity-preserving operations
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Simple convex sets

Hyperplane: {x : a" x = b} (affine, convex)
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Simple convex sets

Hyperplane: {x : a" x = b} (affine, convex)
Halfspace: {x : a'x < b} (convex)
Polytope: conv {x1, ..., xx} (convex)
Polyhedron: {x : Ax < b} (convex)
Ball: {x : [|x — xo| < r} (convex, for any norm)
A Norm cone: {(x,t) : ||x — xo|| < t} (convex, for any norm)

Unit simplex: A, ;== {x € R": x >0, 17x < 1}
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Simple convex sets

BB ANR

Hyperplane: {x : a" x = b} (affine, convex)
Halfspace: {x : a’x < b} (convex)
Polytope: conv {x1, ..., xx} (convex)
Polyhedron: {x : Ax < b} (convex)
Ball: {x : [|x — xo| < r} (convex, for any norm)

)

Norm cone: {(x, t) : ||x — xo|| < t} (convex, for any norm
Unit simplex: A, ;== {x € R": x >0, 17x < 1}
Probability simplex: AT := {x ¢ R": x >0, 17x =1}
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Simple convex sets

NN BEANR

Hyperplane: {x : a" x = b} (affine, convex)
Halfspace: {x : a’x < b} (convex)
Polytope: conv {x1, ..., xx} (convex)
Polyhedron: {x : Ax < b} (convex)
Ball: {x : [|x — xo| < r} (convex, for any norm)

)

Norm cone: {(x, t) : ||x — xo|| < t} (convex, for any norm
Unit simplex: A, ;== {x € R": x >0, 17x < 1}

Probability simplex: AT := {x ¢ R": x >0, 17x =1}
Nonnegative orthant: R’} (convex cone)
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Simple convex sets

Hyperplane: {x : a" x = b} (affine, convex)
Halfspace: {x : a'x < b} (convex)
Polytope: conv {x1, ..., xx} (convex)
Polyhedron: {x : Ax < b} (convex)
Ball: {x : [|x — xo| < r} (convex, for any norm)
A Norm cone: {(x,t) : ||x — xo|| < t} (convex, for any norm)
Unit simplex: A, ;== {x € R": x >0, 17x < 1}

B Probability simplex: AZ == {x ¢ R": x>0, 1"x =1}
B Nonnegative orthant: R (convex cone)
M Symmetric matrices: S” (vector space of dim. %n(n +1))
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Operations that preserve convexity

Let S, T be convex sets. Then, the following sets are

convex:

SNT (also valid for intersection of infinite families)
SxT (cartesian product)
{Ax+b:xeS} (affine transformation of S)

m pS (scaling)

mS+b (translation)

m {(x1,...,xk) : x €S} (projection over some coordinates)
|mS+T (Minkowski sum)
{x:Ax+beS} (Reverse affine transformation)
A clSandintS (Closure and Interior)
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Perspective transformation

Define the perspective function

P:R"xRy;y — R (x,t) —

~ | %

If S C R"is convex, then .
P1S):={(x,t) eER" xR, : X € S} is convex.
Its closure is cl P~(S) = cone (S x {1}).

Sx {1} S={x:|x[ <1} (unitball

& 7
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Perspective transformation

Define the perspective function

P:R"xRy;y — R (x,t) —

~ | %

If S C R"is convex, then .
P1S):={(x,t) eER" xR, : X € S} is convex.
Its closure is cl P~(S) = cone (S x {1}).

S x {1} S={x:|x[ <1} (unitball
PY(S) ={(x.t): ||Ix|]| < t,t >0}

cd P7H(S) = {(x, 1) : |[x]| <t}
(Lorentz cone)
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Positive semidefinite matrices

Proposition / Definition

Let X € S". The following statements are equivalent:
X € S (Sis positive semidefinite)
Yu € R, u’ Xu>0.
All eigenvalues of X are nonnegative.
JHER™™ meN: X =HH"
X € conv{xx" : x € R"} = cone {xx” : x € R"}.

n

In particular, S is a convex cone.
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Positive semidefinite matrices

Proposition / Definition

Let X € S". The following statements are equivalent:
X € S (Sis positive semidefinite)
Yu € R, u’ Xu>0.
All eigenvalues of X are nonnegative.
JHER™™ meN: X =HH"
X € conv{xx" : x € R"} = cone {xx” : x € R"}.

n

In particular, S is a convex cone.

Other, direct proof of the convexity of S’ :

ST={X:u"Xu>0,VueR"} ={X:(X,uu") >0,Vu € R"}
= [ {Xes": (X, uu") >0}

ucR"
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Positive definite matrices

The interior of S is also a cone:

Proposition / Definition

Let X € S". The following statements are equivalent:
X €87 (Sis positive definite)
X €intS]
VueR" u#0 = u' Xu > 0.
All eigenvalues of X are positive.
JH invertible such that X = HH.

@ Sylvester criterion: All leading principal minors of X
are positive.
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Properties of p.s.d. matrices

Lemma

Let X € S. Then,

The matrix AXAT is positive semidefinite (for all A of
appropriate size).

If / is a subset of [n], the principal submatrix
X[, 1 = {Xiia Yiret e

is positive semidefinite.

For all I,j € [n], ’XU’ < \/X,',')(jj.
Xi =0 = Vj e [n],X; =0.
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Matrix decompositions

Proposition (Matrix square root).

Let X € S7.. Then, X has a square root, which we denote
by Xz St , and is the only positive semidefinite matrix
that satisfies )

X = (X%) .

In particular, the eigenvalues of Xz are the square roots of
the eigenvalues of X.

Proposition (Cholesky decomposition).

X € §" admits a Cholesky decomposition of the form
X = LLT, where L is lower triangular.

If X is positive definite, then this decomposition is unique.
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Ellipsoids

Definition (Ellipsoid)

An ellipsoid of R” is a set of the form

E={xeR": (x—x0)" Q@ (x — xo) < 1},
where xg € R" and the matrix Q is positive definite.

All ellipsoids can be obtained as the affine transformation

(or reverse image by some affine transformation) of a unit
ball. Indeed,

E={xcR":||Qx — Q'2xy| <1}
={Q"%y +xo: |yl <1}
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Ellipsoids vs. eigenvalue decomposition

E={xeR": (x—x0)" Q@ (x — x0) <1}

Consider eigendecomposition @ = UAUT = Z Auju]

Then, £ is an elliposid centered at xg, with semlaX|s of
length \/\; along u;.

&

Ve
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Outline

Generalized inequalities and dual cone
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Proper cone

Definition (Proper cone).

A cone K C R" is said to be proper if it is
m closed;
H convex;
m pointed, i.e., it contains no lines. More precisely,

(xeK,—x € K) = x=0;

m and it has a nonempty interior.
K

0

not convex not pointed
G. Sagnol 2 - Convex geometry 32/44



Generalized conic inequality

m Given a proper cone K, we define a partial order <:

xX=<xky < y—xcK.
X<ky < y—x€intK.

K {vly =« x}

of N

X

Note: For matrices, X = Y means X =sn Y. In particular,
X = 0 means that X is positive semidefinite.
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Properties of conic ordering

Let K be a proper cone. The inequality <k satisfies:
transitivity: x <k yandy <y z — x <« z
reflexivity: x <k x.
antisymmetry: x <y yandy <4 x — x=1y.
preservation under addition:

x=<kyandu=xkv — x+u=xy+v.

preservation under nonnegative scaling:
x <kyanda >0 = ax <k ay.

Note that < is a partial order, i.e.,

XAy <5 x*rky.
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Examples

m =g~ is simply the standard elementwise inequality:

X gy < x<y.

Note that { (1) ] and { é ] are not comparable for =R
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Examples

m =g~ is simply the standard elementwise inequality:

X gy < x<y.

0

m Let K ¢ R*! be the cone of coefficients of
polynomials of degree d that are nonnegative on [0, 1]:

Note that { (1) ] and { L ] are not comparable for =R

d
K={acR¥: vxel01], Za,-xi > 0}.
i=0
Then,

d d
a3k B < Vxe|0,1], Z aix' < Z Bix'
i=0 i=0
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Dual cone

Definition (Dual cone).

The dual cone of K is

K*={yl(x,y) 20, Vx € K}.
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Dual cone

Definition (Dual cone).

The dual cone of K is

K* ={yl(x,y) 20, Vx € K}.

K
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A fundamental result

Let K be a cone. Then,

inf CTX - 0 if C ¢ K*

xek | —oo otherwise.
Similarly,

cup ¢ x — ifce —K*

. ~ | +oo otherwise.

G. Sagnol 2 - Convex geometry 37 /44



Dual cone

Proposition (Properties of the dual cone).

Let K be a convex cone.
K™ is a convex cone.
K* is closed (even if K is not).
B K CK — K, CK/.
K has a nonempty interior — K™ pointed.
K** = cl K (so, in particular, K closed — K = K**).
A cl K is pointed =— K™ has a nonempty interior.

In particular,
K proper —> K* proper, and K = (K*)".
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Outline

Separating hyperplane theorems
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Separating hyperplane theorem

If two convex sets do not intersect, then they can be
separated by some hyperplane:

Theorem (Separating hyperplane).

Let X, Y be two disjoint, nonempty convex sets of R".
Then, there 3c € R, v € R" \ {0} such that

Vxe X, (x,v)<c and VyeY, (y,v)>c.

In other words, the hyperplane {x : (x, v) = c} separates
X andY.
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Strict separation

When, in addition, both sets are closed and one of them is
compact, it is possible to separate them strictly:

Theorem (Strict separating hyperplane).

Let X, Y be disjoint, nonempty, closed convex sets of R".
If X or Y is compact, then 3¢ € R, v € R" \ {0} such that

Vxe X, (x,v)<c and VyeY, (y,v)>c.

In other words, the hyperplane {x : (x, v) = c} strictly
separates X and Y.
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Separation theorem for a cone

When one of the two sets is a cone, we can set ¢ = 0:

Theorem (Separating hyperplane for a cone).

Let C C R” be a nonempty convex cone, and Y C R” be a
nonempty convex set which does not intersect C.
Then, dv € R" \ {0} such that

VxeC, (x,v)<0 and VyeY, (y,v)>0.
If in addition, C is closed and Y is compact, then:

veR":Vxel, (x,v) <0 and VyeY, (y,v)>0.
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Separation theorem for a cone

When one of the two sets is a cone, we can set ¢ = 0:

Theorem (Separating hyperplane for a cone).

Let C C R” be a nonempty convex cone, and Y C R” be a
nonempty convex set which does not intersect C.
Then, dv € R" \ {0} such that

VxeC, (x,v)<0 and VyeY, (y,v)>0.
If in addition, C is closed and Y is compact, then:

veR":Vxel, (x,v) <0 and VyeY, (y,v)>0.

In particular, if C is a closed convex coneand y ¢ C,
dveR": ¥VxeC, (x,v)<0 and (y,v)>0.
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Supporting hyperplane

A hyperplane separating S from some y ¢ S is called a
supporting hyperplane if it touches S:

Definition (Supporting hyperplane).

Let S C R” be nonempty, a € R" \ {0} and b € R. We say
that H = {x : a” x = b} is a supporting hyperplane of S if

m S is contained in one of the two halfspaces defined by
H,i.e,

VxeS,aTxgb or VXES,aszb.
m S has at least one boundary point on the hyperplane,

i.e., HNOS # (), where 9S :=cl S \ int S is the
boundary of S.
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Supporting hyperplane theorem

Theorem (Supporting hyperplane).

Let S be a convex set and xq be a boundary point of S.
Then, S has a supporting hyperplane at x,, that is,

JacR"\{0}: VxeS, a'x<a x

Conversely, if S is closed , has nonempty interior, and has
(at least) one supporting hyperplane in each of its
boundary points, then S is convex.
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