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Scalars, vectors, matrices
[n] := {1, . . . , n}

Scalar: plain lower case, e.g. c ∈ R.
Vectors: boldface lower case letters, e.g. v ∈ Rn, with
elements v1, . . . , vn.
Matrices: upper case letters, e.g. A ∈ Rm×n, with
elements Aij (i ∈ [m], j ∈ [n]).

Column decomposition of a matrix:

A = [a1, . . . , an] ∈ Rm×n,

means that aj ∈ Rm is the jth column of A.
Similarly,

A = [a1, . . . , am]T ∈ Rm×n

means that aTi is the ith row of A (with ai ∈ Rn).
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Vector notation
R+ = {x ∈ R : x ≥ 0}.
R++ = {x ∈ R : x > 0}.

Sn = {X ∈ Rn×n : X = XT}.
Sn+ = {X ∈ Sn : X is positive semidefinite}.
Sn++ = {X ∈ Sn : X is positive definite}.

Elementwise inequalities: x ≤ y means xi ≤ yi ,∀i

Example
If A = [a1, . . . , am]T , then Ax ≤ b means

aTi x ≤ bi (∀i ∈ [m]).
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Vector notation

e i = ith standard unit vector [0, . . . , 0, 1, 0, . . . , 0]T

1 or 1n= all-ones vector [1, . . . , 1]T (on blackboard: 11)
Identity matrix I or In
All-ones matrix Jn = 1n1

T
n

Diag (u) =

(
u1

. . .
un

)
, diag (M) = [M11, . . . ,Mnn]T

Example
For v ∈ Rn and M ∈ Rm×n it holds:

vi = eT
i v

Mij = eT
i Me j
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Scalar products and norms
For u, v ∈ Rn,

〈u, v〉 := uTv =
∑
i

uivi

For A,B ∈ Rm×n,

〈A,B〉 := traceATB =
∑
i ,j

AijBij

In particular, if A,B ∈ Sn, it holds 〈A,B〉 = traceAB .

Example

〈1, v〉 = 1Tv is the sum of all entries of v
〈J,M〉 is the sum of all entries of M
〈I ,M〉 is the trace of M
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Scalar products and norms
Euclidean norm ‖v‖ :=

√
〈v , v〉

Frobenius norm of a matrix:

‖A‖F :=
√
〈A,A〉 = (

∑
i ,j

A2

ij)
1/2.

The vectorization of A = [a1, . . . , an] ∈ Rm×n is

vec(A) :=

[
a1

...
an

]
∈ Rmn.

Example

〈A,B〉 = 〈vec(A), vec(B)〉
‖A‖F = ‖vec(A)‖
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Affine functions

Affine functions mapping Rn → R have the form

x 7→ aTx + b.

More generally, an affine function mapping Rn → Rm

has the form
f : x 7→ Ax + b.

for some matrix A ∈ Rm×n and a vector b ∈ Rm.

f linear usually means b = 0, but we abuse the
language, i.e. “linear'affine”...
To emphasize that b = 0, we say that f is a linear form
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Quadratic functions

Quadratic functions mapping Rn → R have the form

x 7→ xTQx + aTx + b.

A quadratic form is a quadratic function without linear
part, i.e., a = 0, b = 0.

Homogenization: every quadratic function is a
quadratic form over Rn × {1}:

xTQx + aTx + b =

[
x

1

]T  Q
1

2
a

1

2
aT b

[ x

1

]
.
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Gradient and Hessian
The gradients and hessian of (sufficiently)
differentiable functions f : Rn → R are

∇f (x) =


∂f

∂x1
(x)

...
∂f

∂xn
(x)

 ∈ Rn, ∇2f (x) =


∂2f

∂x2
1

(x) · · ·
∂2f

∂x1∂xn
(x)

...
. . .

...
∂2f

∂xn∂x1
(x) · · ·

∂2f

∂x2
n

(x)

 ∈ Sn.
Example

∇(x 7→ aTx) = a

∇2(x 7→ aTx) = 0 ∈ Sn

∇(x 7→ 1

2
xTQx) = Qx

∇2(x 7→ 1

2
xTQx) = Q.
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Expressing a quadratic form...
as a linear function of the associated matrix

Lemma (aka the trace-trick).
The function f : Sn → R, X 7→ uTXu is a linear function of
X . Indeed,

uTXu = 〈X ,uuT 〉.

proof. Recall that traceAB = traceBA (trace is invariant to
cyclic permutations).

uTXu = traceuTXu (seen as a 1× 1-matrix)
= traceXuuT (cyclic permutation)
= 〈X ,uuT 〉 (note that uuT is an m × n-matrix)
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Lines, segments, rays

Definition (Lines, segments, rays).
Let x1, x2 ∈ Rn.

The line through x1 and x2 is

{θx1 + (1− θ)x2 : θ ∈ R}.

The segment between x1 and x2 is

{θx1 + (1− θ)x2 : θ ∈ [0, 1]}.

The ray through x1 is

{ θx1 : θ ≥ 0}.
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Affine, Convex, Conic
Definition (Affine, Convex, and Conic sets).
Let S be a subset of Rn.

S is affine if contains all lines joining points of S :

x1, x2 ∈ S , θ ∈ R =⇒ θx1 + (1− θ)x2 ∈ S .

S is convex if contains all segments joining points of S :

x1, x2 ∈ S , θ ∈ [0, 1] =⇒ θx1 + (1− θ)x2 ∈ S .

S is a cone if contains the ray through any point of S :

x ∈ S , θ ≥ 0 =⇒ θx ∈ S .

S is a convex cone if:

x1, x2 ∈ S , λ1, λ2 ≥ 0 =⇒ λ1x1 + λ2x2 ∈ S .
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Affine, Convex, Conic combinations
More generally, we can combine more than 2 points

Definition (Affine, Convex, Conic combinations).

Let x i ∈ Rn (∀i ∈ [k]). The expression
k∑

i=1

λix i is called

an affine combination of the x ′i s if
∑
i

λi = 1.

a convex combination of the x ′i s if
∑
i

λi = 1, λ ≥ 0.

a conic combination of the x ′i s if λ ≥ 0.

Proposition
A set is affine/convex/a convex cone iff it is stable by
affine/convex/conic combinations.
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Affine, Convex, Conic hull
Definition (Affine, Convex, and Conic hull).

The vector space spanned by S ⊆ Rn is:

span S = {
k∑

i=1

λix i : k ∈ N, ∀i ∈ [k], x i ∈ S , λ ∈ Rk}.

The affine hull of S is:

a� S = {
k∑

i=1

λix i : k ∈ N, ∀i ∈ [k], x i ∈ S , λ ∈ Rk , 1Tλ = 1}.

The convex hull of S is:

conv S = {
k∑

i=1

λix i : k ∈ N, ∀i ∈ [k], x i ∈ S , λ ≥ 0, 1Tλ = 1}.

The conic hull of S is:

cone S = {
k∑

i=1

λix i : k ∈ N, ∀i ∈ [k], x i ∈ S , λ ≥ 0}.
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Affine, Convex, Conic hull

The previous hull definitions coincinde with the intuitive
meaining of hull:

Proposition
a� /conv /cone S =

⋂
T⊇S

Taffine/convex/convex cone

T

That is, the affine (convex, conic hull) of S is the smallest
affine set (convex set, convex cone) that contains S .
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Characterization of affine spaces

Affine spaces are vector spaces plus a shift:

Proposition
Let L be an affine space, and x0 ∈ L. Then, V = L− x0 is a
vector space, and does not depend on the choice of x0.
Hence we can define dim L := dimV .

Using the fact that we can write V = ImA or V = Ker F ,

Proposition
L is an affine subspace of Rn of dimension m ≤ n

⇐⇒ L = {Ay + b : y ∈ Rm} for some A ∈ Rn×m,b ∈ Rn.
⇐⇒ L = {x ∈ Rn : Fx = g} for some F ∈ Rm×n,g ∈ Rm}.
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Caratheodory theorem
Recall the definition of a convex hull:

conv S = {
k∑

i=1

λix i : k ∈ N, ∀i ∈ [k], x i ∈ S , λ ≥ 0, 1Tλ = 1}.

=

{
x ∈ Rn :

x is convex combination of k elements
of S, for some k ∈ N

}
.

Can we bound the number k of elements of S we need to
combine to get any elements of conv S ?

Theorem (Caratheodory).
Let S ⊆ Rn be of affine dimension m := dim a� S ≤ n, and
x ∈ conv S . Then, x can be expressed as a convex
combination of k ≤ m + 1 points of S .
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Caratheodory theorem

Theorem (Caratheodory).
Let S ⊆ Rn be of affine dimension m := dim a� S ≤ n, and
x ∈ conv S . Then, x can be expressed as a convex
combination of k ≤ m + 1 points of S .

There is also an analog result for conic hulls:

Theorem (Caratheodory – conic version).
Let S ⊆ Rn, such that dim span S = m ≤ n, and let
x ∈ cone S . Then, x can be expressed as a conic
combination of k ≤ m ≤ n points of S .
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Simple convex sets

1 Hyperplane: {x : aTx = b} (affine, convex)

2 Halfspace: {x : aTx ≤ b} (convex)
3 Polytope: conv {x1, . . . , xk} (convex)
4 Polyhedron: {x : Ax ≤ b} (convex)
5 Ball: {x : ‖x − x0‖ ≤ r} (convex, for any norm)
6 Norm cone: {(x , t) : ‖x − x0‖ ≤ t} (convex, for any norm)
7 Unit simplex: ∆n := {x ∈ Rn : x ≥ 0, 1Tx ≤ 1}
8 Probability simplex: ∆=

n := {x ∈ Rn : x ≥ 0, 1Tx = 1}
9 Nonnegative orthant: Rn

+ (convex cone)

10 Symmetric matrices: Sn (vector space of dim. 1
2
n(n + 1))
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3 Polytope: conv {x1, . . . , xk} (convex)
4 Polyhedron: {x : Ax ≤ b} (convex)
5 Ball: {x : ‖x − x0‖ ≤ r} (convex, for any norm)
6 Norm cone: {(x , t) : ‖x − x0‖ ≤ t} (convex, for any norm)
7 Unit simplex: ∆n := {x ∈ Rn : x ≥ 0, 1Tx ≤ 1}
8 Probability simplex: ∆=

n := {x ∈ Rn : x ≥ 0, 1Tx = 1}
9 Nonnegative orthant: Rn

+ (convex cone)

10 Symmetric matrices: Sn (vector space of dim. 1
2
n(n + 1))
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Operations that preserve convexity

Let S , T be convex sets. Then, the following sets are
convex:

1 S ∩ T (also valid for intersection of infinite families)
2 S × T (cartesian product)
3 {Ax + b : x ∈ S} (affine transformation of S )

ρS (scaling)
S + b (translation)
{(x1, . . . , xk) : x ∈ S} (projection over some coordinates)

4 S + T (Minkowski sum)
5 {x : Ax + b ∈ S} (Reverse affine transformation)
6 cl S and int S (Closure and Interior)
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Perspective transformation
Define the perspective function

P : Rn × R++ → Rn, (x , t) 7→ x

t
.

7 If S ⊆ Rn is convex, then
P−1(S) := {(x , t) ∈ Rn × R++ :

1

t
x ∈ S} is convex.

Its closure is clP−1(S) = cone (S × {1}).

S

1

S × {1}

0

S = {x : ‖x‖ ≤ 1} (unit ball)

P
−1(S) = {(x , t) : ‖x‖ ≤ t, t > 0}

clP
−1(S) = {(x , t) : ‖x‖ ≤ t}

(Lorentz cone)
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Positive semidefinite matrices
Proposition / Definition
Let X ∈ Sn. The following statements are equivalent:

1 X ∈ Sn+ (S is positive semidefinite)
2 ∀u ∈ Rn,uTXu ≥ 0.

3 All eigenvalues of X are nonnegative.
4 ∃H ∈ Rn×m,m ∈ N : X = HHT

5 X ∈ conv {xxT : x ∈ Rn} = cone {xxT : x ∈ Rn}.

In particular, Sn+ is a convex cone.

Other, direct proof of the convexity of Sn+:
Sn+ = {X : uTXu ≥ 0,∀u ∈ Rn} = {X : 〈X ,uuT 〉 ≥ 0,∀u ∈ Rn}

=
⋂
u∈Rn
{X ∈ Sn : 〈X ,uuT 〉 ≥ 0}
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Positive definite matrices

The interior of Sn+ is also a cone:

Proposition / Definition
Let X ∈ Sn. The following statements are equivalent:

1 X ∈ Sn++ (S is positive definite)
2 X ∈ intSn+
3 ∀u ∈ Rn, u 6= 0 =⇒ uTXu > 0.

4 All eigenvalues of X are positive.
5 ∃H invertible such that X = HHT .
6 Sylvester criterion: All leading principal minors of X
are positive.
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Properties of p.s.d. matrices

Lemma
Let X ∈ Sn+. Then,

1 The matrix AXAT is positive semidefinite (for all A of
appropriate size).

2 If I is a subset of [n], the principal submatrix

X [I , I ] = {Xi1,i2}i1∈I ,i2∈I

is positive semidefinite.
3 For all i , j ∈ [n], |Xij | ≤

√
XiiXjj .

4 Xii = 0 =⇒ ∀j ∈ [n],Xij = 0.

G. Sagnol 2 - Convex geometry 27 / 44



Matrix decompositions

Proposition (Matrix square root).
Let X ∈ Sn+. Then, X has a square root, which we denote
by X 1

2 ∈ Sn+, and is the only positive semidefinite matrix
that satisfies

X =
(
X

1

2

)2
.

In particular, the eigenvalues of X 1

2 are the square roots of
the eigenvalues of X .

Proposition (Cholesky decomposition).
X ∈ Sn+ admits a Cholesky decomposition of the form
X = LLT , where L is lower triangular.
If X is positive definite, then this decomposition is unique.
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Ellipsoids

Definition (Ellipsoid)
An ellipsoid of Rn is a set of the form

E = {x ∈ Rn : (x − x0)TQ−1(x − x0) ≤ 1},

where x0 ∈ Rn and the matrix Q is positive definite.

All ellipsoids can be obtained as the affine transformation
(or reverse image by some affine transformation) of a unit
ball. Indeed,

E = {x ∈ Rn : ‖Q−1/2x − Q−1/2x0‖ ≤ 1}
= {Q1/2y + x0 : ‖y‖ ≤ 1}
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Ellipsoids vs. eigenvalue decomposition

E = {x ∈ Rn : (x − x0)TQ−1(x − x0) ≤ 1}

Consider eigendecomposition Q = UΛUT =
n∑

i=1

λiu iu
T
i .

Then, E is an elliposid centered at x0, with semiaxis of
length

√
λi along u i .

√
λ1

u1

u2

√
λ2

x0

E
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Proper cone
Definition (Proper cone).
A cone K ⊂ Rn is said to be proper if it is

closed;
convex;
pointed, i.e., it contains no lines. More precisely,

(x ∈ K ,−x ∈ K ) =⇒ x = 0;

and it has a nonempty interior.
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Generalized conic inequality
Given a proper cone K , we define a partial order �K :

x �K y ⇐⇒ y − x ∈ K .

x ≺K y ⇐⇒ y − x ∈ intK .

x

K

0

{y | y �K x}

Note: For matrices, X � Y means X �Sn+ Y . In particular,
X � 0 means that X is positive semidefinite.
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Properties of conic ordering

Proposition
Let K be a proper cone. The inequality �K satisfies:

1 transitivity: x �K y and y �K z =⇒ x �K z

2 reflexivity: x �K x .
3 antisymmetry: x �K y and y �K x =⇒ x = y .
4 preservation under addition:

x �K y and u �K v =⇒ x + u �K y + v .
5 preservation under nonnegative scaling:

x �K y and α ≥ 0 =⇒ αx �K αy .

Note that �K is a partial order, i.e.,

x �K y ⇐⇒6 x �K y .
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Examples
�Rn+ is simply the standard elementwise inequality:

x �Rn+ y ⇐⇒ x ≤ y .

Note that
[

0

1

]
and

[
1

0

]
are not comparable for �Rn+ .

Let K ⊂ Rd+1 be the cone of coefficients of
polynomials of degree d that are nonnegative on [0, 1]:

K = {α ∈ Rd+1 : ∀x ∈ [0, 1],
d∑

i=0

αix
i ≥ 0}.

Then,

α �K β ⇐⇒ ∀x ∈ [0, 1],
d∑

i=0

αix
i ≤

d∑
i=0

βix
i
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Dual cone

Definition (Dual cone).
The dual cone of K is

K ∗ = {y |〈x , y〉 ≥ 0, ∀x ∈ K}.
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A fundamental result

Proposition
Let K be a cone. Then,

inf
x∈K

cTx =

{
0 if c ∈ K ∗

−∞ otherwise.

Similarly,

sup
x∈K

cTx =

{
0 if c ∈ −K ∗
+∞ otherwise.
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Dual cone

Proposition (Properties of the dual cone).
Let K be a convex cone.

1 K ∗ is a convex cone.
2 K ∗ is closed (even if K is not).
3 K1 ⊆ K2 =⇒ K ∗

2
⊆ K ∗

1
.

4 K has a nonempty interior =⇒ K ∗ pointed.
5 K ∗∗ = clK (so, in particular, K closed =⇒ K = K ∗∗).
6 clK is pointed =⇒ K ∗ has a nonempty interior.

In particular,

K proper =⇒ K ∗ proper, and K = (K ∗)∗.
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Separating hyperplane theorem

If two convex sets do not intersect, then they can be
separated by some hyperplane:

Theorem (Separating hyperplane).
Let X ,Y be two disjoint, nonempty convex sets of Rn.
Then, there ∃c ∈ R, v ∈ Rn \ {0} such that

∀x ∈ X , 〈x , v〉 ≤ c and ∀y ∈ Y , 〈y , v〉 ≥ c .

In other words, the hyperplane {x : 〈x , v〉 = c} separates
X and Y .
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Strict separation

When, in addition, both sets are closed and one of them is
compact, it is possible to separate them strictly:

Theorem (Strict separating hyperplane).
Let X ,Y be disjoint, nonempty, closed convex sets of Rn.
If X or Y is compact, then ∃c ∈ R, v ∈ Rn \ {0} such that

∀x ∈ X , 〈x , v〉 < c and ∀y ∈ Y , 〈y , v〉 > c .

In other words, the hyperplane {x : 〈x , v〉 = c} strictly
separates X and Y .
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Separation theorem for a cone
When one of the two sets is a cone, we can set c = 0:

Theorem (Separating hyperplane for a cone).
Let C ⊆ Rn be a nonempty convex cone, and Y ⊆ Rn be a
nonempty convex set which does not intersect C .
Then, ∃v ∈ Rn \ {0} such that

∀x ∈ C , 〈x , v〉 ≤ 0 and ∀y ∈ Y , 〈y , v〉 ≥ 0.

If in addition, C is closed and Y is compact, then:

∃v ∈ Rn : ∀x ∈ C , 〈x , v〉 ≤ 0 and ∀y ∈ Y , 〈y , v〉 > 0.

In particular, if C is a closed convex cone and y /∈ C ,
∃v ∈ Rn : ∀x ∈ C , 〈x , v〉 ≤ 0 and 〈y , v〉 > 0.
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Supporting hyperplane
A hyperplane separating S from some y /∈ S is called a
supporting hyperplane if it touches S :

Definition (Supporting hyperplane).
Let S ⊆ Rn be nonempty, a ∈ Rn \ {0} and b ∈ R. We say
that H = {x : aTx = b} is a supporting hyperplane of S if

S is contained in one of the two halfspaces defined by
H , i.e,

∀x ∈ S , aTx ≤ b or ∀x ∈ S , aTx ≥ b.

S has at least one boundary point on the hyperplane,
i.e., H ∩ ∂S 6= ∅, where ∂S := cl S \ int S is the
boundary of S .
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Supporting hyperplane theorem

Theorem (Supporting hyperplane).
Let S be a convex set and x0 be a boundary point of S .
Then, S has a supporting hyperplane at x0, that is,

∃a ∈ Rn \ {0} : ∀x ∈ S , aTx ≤ aTx0.

Conversely, if S is closed , has nonempty interior, and has
(at least) one supporting hyperplane in each of its
boundary points, then S is convex.
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