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Chapter X: Application to Data Analysis

In this chapter, we will see that many tasks in data analysis reduce to solving a convex optimization

problem. Throughout we assume that we have observed some data y1, . . . , ym ∈ R. Each observation yi is

associated with a vector xi ∈ Rn of features: it is assumed that xi = [xi1, . . . , xin] are quantitative variables

that carry some information about the observation yi, and we search a model to explain the relation between

the xi’s and yi’s. These models are typically used for

• understanding how the features explain the observed data;

• predict the observation y∗ associated with some unseen feature x∗.

In the machine learning terminology, the set of samples (xi, yi), i = 1, . . . ,m, is called the training set : this

is the data we use to train the model. Then, the set of new samples (e.g., (x∗, y∗)) for which we use the

model is called the testing set (of course, the algorithm only uses x∗ to make predictions, but we can test

the performance of an algorithm by comparing the predicted value ŷ∗ to the true value y∗).

1 Linear Regression

One of the simplest and most fundamental models is the linear regression model (and its many variants).

Here, we assume that the relation between the observations and the features is approximately linear, i.e.,

there exists a vector θ ∈ Rn such that:

yi ' xTi θ.

Note: It is straightforward to extend this model to deal with nonlinear relationships of the form

yi ' ϕ(xi)
Tθ, where ϕ is some function of Rn → Rn′

. For example, if an affine relationship between yi
and the xik’s is sought, i.e., yi ' θ0 + θTxi, we simply need to add a constant feature xi0 = 1 for each

sample: indeed we have θ0+θTxi = x′Ti θ
′, where x′i = ϕ(xi) := [1,xTi ]T and θ′ = [θ0,θ

T ]T . Similarly, in

quadratic regression we look for a vector of coefficients θ such that yi ' θ0+
∑
k θkxik+

∑
k

∑
` θk,`xikxi`.

This model remains linear with respect to the vector of modified features

x′i = ϕ(xi) := [1, (xi)i∈[n], (xikxi`)1≤k≤`≤n] ∈ R1+n+n(n+1)/2.

In vector notation, we can write

y = Xθ + ε,

where X = [x1, . . . ,xm]T ∈ Rm×n is the matrix whose rows are the feature vectors. The vector ε ∈ Rm

contains the errors between the model and the true observations.

1.1 Least Squares Estimator

The least squares approach consists in choosing θ so as to minimize the euclidean norm of ε. In other words,

we want to solve

minimize
θ∈Rn

‖Xθ − y‖2 (1)
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The optimal solution of this problem is called the least squares estimator of θ, or OLS estimator (for

ordinary least squares). We show below that it can be computed by solving a simple linear equation, and

then we will discuss some of its properties.

Now, let us assume that the matrix X has full column rank (i.e., m ≥ n and rankX = n). The objective

function of Problem (1) can be rewritten as θ 7→ θTXTXθ − 2θTXTy + yTy. This is an unconstrained

optimization problem, so its solution θ∗ is obtained when the gradient vanishes:

2(XTXθ∗ −XTy) = 0.

The full rank assumption ensures that XTX is invertible (because1 rankXTX = rankX = n). Hence,

the optimal θ∗ = θ̂LS (the subscript LS stands for least squares) is the unique solution of the linear system

XTXθ = XTy, i.e.,

θ∗ = (XTX)−1XTy. (2)

We may ask ourselves why we chosed to minimize the sum of squares of the model errors εi’s (for example,

we could also have minimized the sum of the absolute deviations |εi|, i.e., the L1−norm of ε. One obvious

reason is that the choice of the L2 norm gives the nice analytical solution (2). But there are other, deep

statistical reasons for this choice. In particular, we show in Sections 1.2 and 1.3 that simple probabilistic

models lead to the same estimator. But minimizing other loss functions of ε also makes sense for particular

applications, as will be seen in Section 2.

1.2 Maximum Likelihood Estimator

Assume that all errors εi are random noise, drawn independently from the same distribution (we say that

the εi are independently and identically distributed (i.i.d.)). Let us further assume that the noise is centered

(E[εi] = 0) and the variance is some (unknown) constant V[εi] = σ2. This means that yi is the realization

of a random variable Yi with E[Yi] = xTi θ. The probability density of (Y1, . . . , Ym) at (y1, . . . , ym) can be

expressed as a function of θ: This is the likelihood

L(θ|y,x1, . . . ,xm) =

m∏
i=1

fYi
(yi),

where fYi
is the probability distribution function (PDF) of Yi.

Now, let us assume that the errors are normally distributed, i.e., εi ∼ N (0, σ2), which implies Yi ∼
N (xTi θ, σ

2). Under the Gaussian assumption,

L(θ|y,x1, . . . ,xm) =

m∏
i=1

C · exp
(
− 1

2σ2
(yi − xTi θ)2

)
,

where C is some constant. The maximum likelihood estimator θ̂ is the vector that maximizes the above

expression. Taking the log, we see that θ̂ is the solution of the optimization problem

maximize
θ∈Rn

m∑
i=1

− 1

2σ2
(yi − xTi θ)2, (3)

which is the same problem (up to a constant multiplication factor −1/2σ2) as Problem (1). So we have

shown that when the errors are normally distributed, the maximimum likelihood estimator of θ coincides

with the OLS estimate.

1To see this, one can show that X and XTX have the same nullspaces. Indeed Xu = 0 =⇒ XTXu = 0, and conversely,
XTXu = 0 =⇒ uTXTXu = 0 =⇒ ‖Xu‖ = 0 =⇒ Xu = 0.
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1.3 Best Linear Unbiased Estimator

More generally (without the normality assumption), we have the Gauss-Markov theorem: This result shows

that the least squares estimator is optimal in a very broad sense: its variance is minimal with respect to the

�Sn+ - ordering in the class of all unbiased estimator!

Theorem 1. Let X be a matrix of full column rank. Assume that we have observations y drawn from a

random variable Y with E[Y ] = Xθ, V[Y ] = σ2Im. Let θ̂ = LY be an unbiased estimator for θ, that is,

E[θ̂] = θ (Note that the estimator θ̂ is a random variable). Then, we have

V[θ̂] = LV[Y ]LT = σ2LLT � σ2 (XTX)−1,

where � is the order relative to Sn+. Moreover, the lower bound is attained for L∗ = (XTX)−1XT . In

other words, the best linear unbiased estimator (BLUE) for θ coincides with the OLS estimate of θ.

Proof. The fact that the lower bound is attained for L∗ is clear by substituting its expression in L∗TL∗.

Hence, the only thing to prove is the matrix inequality. Note that E[θ̂] = LXθ. It follows that θ̂ is unbiased if

and only if LX = In. Then, we can see that the matrix[
XTX In
In LLT

]

is positive semidefinite, because it can be written as(
XT

L

)(
XT

L

)T

.

Hence, since XTX � 0, the Schur complement lemma gives us

LLT � (XTX)−1.

2 Beyond least-squares

2.1 Huber regression

Imagine we want to fit a model of the form

y = Xθ + ε.

Often, real-world data contains outliers. Since the square function grows rapidly, minimizing
∑
i ε

2
i might

not be a good idea, since the εi’s corresponding to a corrupted sample (xi, yi) might be very large. Therefore,

it has been proposed to minimize
∑
i Lδ(εi) instead, where Lδ : R→ R+ is the Huber’s loss function, defined

by

Lδ(x) =

{
x2 for |x| ≤ δ,
δ(2 |x| − δ), otherwise.

For a threshold parameter δ > 0, Lδ is a convex function which is quadratic near 0, and linear away from

0, with continuous derivatives at ±δ.
The Huber loss function is SOCP-representable (this requires the introduction of auxiliary variables):
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Indeed, it can be seen that

Lδ(x) ≤ t ⇐⇒ ∃a, b ∈ R :

{
a2 + 2δ|b| ≤ t
a+ b = x.

Hence, the Huber regression problem “minimizeθ
∑
i Lδ(x

T
i θ − yi)” can be recast as an SOCP. (Why? )

2.2 Ridge regression

Recall that in Section 1, we assumed that X had a full column rank, and hence that XXT was invertible.

In practice, it can happen that XXT is nearly singular/badly conditionned. As a result, the least squares

estimate θ∗ can vary a lot if some data xik is perturbed just a little bit. Even worse, in some situations we

might have more features than observations (n > m); in this case, X cannot have full column rank.

The ridge regression consists in adding a penalty to the cost function:

minimize
θ∈Rn

‖Xθ − y‖2 + λ‖θ‖2.

Then, the solution of this problem is

θ̂ridge = (XTX + λIn)−1XTy.

The matrix (XTX + λIn) is nonsingular for any λ > 0, so θ̂ridge is well defined. There is a tradeoff in the

choice of λ: larger values of λ will tend produce larger deviations |εi|, but the matrix (XTX +λIn) is better

conditionned, hence the estimator θ̂ridge will be more robust. Intuitively, large λ favours smaller values of

θ. The larger is λ, the more biased is the estimation, but the smaller is the variance. For λ ≥ λ′ ≥ 0, we

can show that

V[θ̂
λ

ridge] � V[θ̂
λ′

ridge] � V[θ̂LS],

where

V[θ̂
λ

ridge] := σ2(XTX + λIn)−1 XTX (XTX + λIn)−1.

Hint: to show this, we must use the fact that XTX and XTX + λIn commute, hence these matrices can be

diagonalized in the same basis.

2.3 Lasso regression

In some situations, the number n of features can be very large, and we want to find a sparse model

yi '
∑
k∈I

θkxik,

where I is a small subset of [n]. This is equivalent to searching for a model of the form yi = θTxi + εi for

a sparse vector θ (i.e., a vector θ with many elements equal to 0. For this purpose, the lasso estimator has

been proposed: It solves the optimization problem

minimize
θ∈Rn

‖Xθ − y‖2 + λ‖θ‖1.

Contrarily to standard least squares (or ridge regression), there is no simple closed-form expression for this

problem. However, this is a convex optimization problem which can be solved by standard solvers (e.g., it

can be reformulated as an SOCP). In practice, we observe that the lasso estimator θ̂lasso has more zeroes

when λ grows. One reason is that θ 7→ ‖θ‖1 serves as a good convex approximation of the `0 “norm”:

‖θ‖0 := |{i ∈ [n] : θi 6= 0}|.
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2.4 Elastic-net regression

To combine the advantages of ridge and lasso regressions, the elastic-net estimator solves an optimization

problem of the form

minimize
θ∈Rn

‖Xθ − y‖2 + λ1‖θ‖1 + λ2‖θ‖22,

for some parameters λ1, λ2 ≥ 0.

3 Classification

In many machine-learning tasks, the data yi is binary (yi ∈ {0, 1}) and indicates the membership of the ith

sample to one of two classes C0 (if yi = 0) or C1 (if yi = 1). We next discuss two methods to compute a

classifier, that is, a function able to predicts whether a new sample x belongs to the class C0 or C1.

3.1 Logistic regression

In logistic regression, we use maximum likelihood estimation to fit a probabilistic model of the form

P[yi = 1] = f(xTi θ),

where f : R → [0, 1] is the logistic function f : u 7→ eu

1+eu . Then, if we are given a new sample x∗, we can

predict that it belongs to the class C1 with probability f(xT∗ θ).

If the observations are independent, we can write the likelihood of the parameter θ ∈ Rn as the product

L(θ|X,y) =
∏
i∈[m]
yi=1

P[yi = 1] ·
∏
i∈[m]
yi=0

P[yi = 0] =

m∏
i=1

exp(yi · xTi θ)

1 + exp(xTi θ)
.

Taking the log, we obtain a convex optimization problem:

maximize
θ∈Rn

logL(θ|X,y) =

m∑
i=1

yi · xTi θ − log(1 + exp(xTi θ))

The convexity of the above problem follows from the convexity of the log-sum-exp function: The function

u 7→ log(1 + exp(u)) = log(exp(0) + exp(u)) is convex, so after composition with a linear map, we see that

the objective function used in logistic regression is concave.

3.2 Support vector machines

Another deterministic approach consists in trying to geometrically separate the points (xi)i∈C0
from the

points (xi)i∈C1
. The simplest approach is to search for a hyperplane in Rn which separates those two groups

of points. We will see in the next section how to extend the result of this section to search for nonlinear

separators.

For the ease of notation, in this section we assume that yi = −1 for samples in the class C0, and yi = 1

for samples in the class C1. Then, a separating hyperplane is a nonzero vector w ∈ Rn and a scalar b such

that

yi(w
Txi − b) > 0, (∀i ∈ [n]).

The next theorem explains when the data can be separated by a hyperplane:
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Theorem 2. The data (xi, yi), i = 1, . . . ,m, is linearly separable if and only if the sets conv {xi : i ∈ C0}
and conv {xj : j ∈ C1} do not intersect.

Proof. ⇐= If the convex hulls do not intersect, then they can be strictly separated by a hyperplane (this is the

strict version of the separating hyperplane theorem, which we can use because the two sets are compact.)

=⇒ Conversely, assume that the data is linearly separable, so ∃a ∈ Rn, b ∈ R:

wTxi < b, ∀i ∈ C0 and wTxi > b, ∀i ∈ C1.

Then, by convexity we have wTx < b for all x ∈ conv {xi : i ∈ C0} and wTx > b for all x ∈ conv {xi : i ∈ C1},
which implies that these convex hulls do not intersect.

Hard-margin (robust) separation Assume that the data is separable. We want to separate the data in

the following manner:

wTxi ≤ b− 1, ∀i ∈ C0 and wTxi ≥ b+ 1, ∀i ∈ C1.

Or equivalently,

yi(w
Txi − b) ≥ 1, ∀i ∈ [m].

To make the classifier robust, we want the stripe S = {x : |wTx − b| ≤ 1} to be as wide as possible.

The width of the stripe is given by δ = 2
‖w‖ , so the hard-margin support vector machine (SVM) solves the

following problem (which is equivalent to an SOCP):

minimize
w∈Rn,b∈R

‖w‖2

s.t. yi(w
Txi − b) ≥ 1, ∀i ∈ [m].

Soft-margin classifier Since it is not always possible to linearly separate the data, we can also search

for a soft-margin classifier. Ideally, we would like the stripe S to be very wide, and empty. Instead, the

soft-margin SVM minimizes a combination of ‖w‖2 (to have a wide margin), and a penalty for points lying

on the wrong side of the margin:

φ(w, b;xi, yi) =

{
0 if yi(w

Txi − b) ≥ 1;

1− yi(wTxi − b) otherwise,

which can be written concisely as φ(w, b;xi, yi) = max(0, 1− yi(wTxi − b)). Finally, for a parameter λ > 0

that sets the tradeoff between the two objectives (wide margin, points on the correct side of the margin),

the SVM solves

minimize
w∈Rn,b∈R

m∑
i=1

max(0, 1− yi(wTxi − b)) + λ‖w‖2

This can be rewritten as the following SOCP:

minimize
w,ζ∈Rn, b,t∈R

m∑
i=1

ζi + λt

s.t. yi(w
Txi − b) ≥ 1− ζi, ∀i ∈ [m] (4)

ζi ≥ 0, ∀i ∈ [m].

‖w‖2 ≤ t.
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Points xi in original feature space. Points x′i = ϕ(xi) in augmented feature space.

Figure 1: The points xi in the original feature space (left) are not linearly separable (the color of the points
indicate their membership to the class C0 or C1). However, after a suitable embedding in a space of larger
dimensions, the points x′i = ϕ(xi) become linearly separable. Credits: C. Bauckhage.

4 The kernel trick

In the introduction, we explained that linear regression techniques can be used to learn a nonlinear rela-

tion between the features xi and some observations yi. For example, we mentioned the case of quadratic

regression, which can be handled by working with the vector of modified features

x′ = [1,x, lower-triangle(xxT )] ∈ R1+n+n(n+1)/2.

The same also works for classification tasks: transforming the initial vector of features x to a vector

x′ = ϕ(x) of larger dimensions may help to perform classification tasks. As an example, consider the data

depicted in Figure 1. Here, the initial points cannot be linearly separated, but the augmented vectors

x′i = ϕ(xi) := [xi1, xi2, x
2
i1 + x2i2]

are perfectly separable by a hyperplane!

However, this raises two kinds of issue: First, it is often not clear how to select the function ϕ. Second, the

transformation ϕ : Rn → Rn′
may drastically improve the dimension of the feature vectors. For example, for

quadratic regression we already need n′ = O(n2) features. As a result, the learning algorithm might become

inefficient.

One way to overcome these issues is to use the Kernel trick. We briefly describe (without proofs) how

this works. We first define the notion of positive semidefinite kernels, which are a kind of infinite positive

semidefinite matrix.

Definition 1. Positive semidefinite kernel. A function K : Rn×Rn → R is called a positive semidefinite

kernel, if for all N ∈ N and for all x1, . . . ,xN ∈ Rn, the matrix

K[x1, . . . ,xN ] := {K(xi,xj)}1≤i,j≤N ∈ SN+ .

As for the case of finite matrices, there are equivalent definitions. For example, it can be shown that
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K : Rn ×Rn → R is a positive semidefinite kernel iff for all square-integrable function f : Rn → R, it holds:∫
x∈Rn

∫
y∈Rn

K(x,y)f(x)f(y) dx dy ≥ 0.

A simplified version of Mercer’s theorem follows:

Theorem 3 (Mercer (simplified)). Let K be a positive semidefinite kernel. Then, there exists a function

ϕ such that

K(x,y) = 〈ϕ(x), ϕ(y)〉.

Intuitively, the idea is that, as for finite positive semidefinite matrices, positive semidefinite kernels have

an eigendecomposition of the form

K(x,y) =

∞∑
i=1

λiψi(x)ψi(y),

and the functions ψi are called the eigenfunctions of K. Then, the function ϕ of the theorem is the (possibly

infinite) sequence ϕ(x) =
(√
λiψi(x)

)
i∈N.

We now give two examples of kernels which are used a lot in practice (without proof that they are positive

semidefinite):

Example:

The function K(x,y) = (xTy+ 1)d is a positive semidefinite kernel, associated with a feature vector ϕ(x) of

dimension
(
n+d
d

)
. The coordinates of ϕ(x) form a basis of the space Rd[x1, . . . , xn] of polynomials of degree

d on n variables.

#1

Example:

The function K(x,y) = exp(− 1
2σ2 ‖x − y‖2) is a positive semidefinite kernel. Its associated feature vector

ϕ(x) is in fact an infinite sequence.

#2

Now, the idea of the kernel trick is as follows:

• Assume that we have a regression or classification task, in which the learning algorithm only depends on

the scalar products xTi xj between different samples. (This is the case for many machine learning tasks,

such as ridge regression or SVM. We will explain in more details how this works for ridge regression

on the next page).

• Let K be a positive semidefinite kernel associated with a Mercer’s function ϕ (maybe this function ϕ

is unknown, we just need to know that such a function exists).

• If we want to apply the learning algorithm to the vector of modified features x′ = ϕ(x), our algorithm

needs to compute scalar products of the form ϕ(x)Tϕ(y).

• Instead, use Mercer theorem and replace all occurences of ϕ(x)Tϕ(y) in the algorithm by K(x,y).

We next show how to derive the kernelized version of the ridge-regression. We point out that it is also

possible to make a kernelized version of the SVM, because the dual of the SOCP (4) (we will learn about

dual optimization problems in the next chapter) only depends on the scalar products xTi xj .
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Figure 2: Example of a simple regression wih three different kernels. Credits: C. Bauckhage

Example:

We show how to use the Kernel trick for ridge regression.

We recall that the ridge-estimator of the vector of coefficients θ is

θ∗ = (XTX + λI)−1XTy.

Then, if we want to predict the response y∗ corresponding to a new sample x∗, we do

ŷ∗ = xT∗ θ
∗ = xT∗ (XTX + λIn)−1XTy.

After some linear algebra, we can show thata

ŷ∗ = xT∗X
T (XXT + λIm)−1y.

Using the above formula is not a good idea in general, because we need to compute the inverse a m ×m-

matrix instead of a n × n matrix, and we usually have more observations than features (in fact, note that

we don’t have to invert the matrix, we just have to solve a linear system!). However, the last formula will

allow us to use the kernel trick. Indeed, it can be rewritten as ŷ∗ = kT (Q+ λIm)−1y, where k is the vector

with elements ki = xT∗ xi and Q is the matrix with elements xTi xj . Now, the kernelized ridge regression

simply consists in replacing the vector k by k′(x∗) = [K(x∗,x1), . . . ,K(x∗,xm)] amd the matrix Q by

Q′ = {K(xi,xj)}1≤i,j≤m. In practice, one need to solve the m×m linear system

(Q+ λIm)z = y

for z ∈ Rm during the training phase. Then, the prediction for a new sample x∗ in the testing set is:

ŷ∗ = k′(x∗)
Tz.

An example of regression in the case n = 1 with three different kernels is shown in Figure 2.

aThis is not trivial! It is a consequence of the Woodburry matrix identity.

#3
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5 Design of Experiments

In many applications, we have to run an experiment to obtain samples (xi, yi). When the budget for

experimentation is limited, it is important to carefully select the vector of features xi for which we want to

obtain a measurement yi. For simplicity, assume that experimental trials can be conducted at any of the

points x1, . . . ,xm ∈ Rn. We assume that measurements are linear, as in the model of Section 1: y = xTθ+ε,

where ε is centered at 0 and has variance σ2.

Denote by ni the number of trials to perform at xi (experiments can be replicated, which yields several

independent observations of the random variable Yi). A total of N experimental trials has to be selected,

i.e.,
∑m
i=1 ni = N . Then, we obtain a big vector with all collected observations, of the form

y = XTθ + ε,

where

X = [x1, . . . ,x1︸ ︷︷ ︸
n1times

,x2, . . . ,x2︸ ︷︷ ︸
n2times

, . . . ,xm, . . . ,xm︸ ︷︷ ︸
nmtimes

]T ∈ RN×n.

The Gauss-Markov theorem tells us that the best linear unbiased estimator for θ coincides with the OLS

estimate, and its variance is proportional to

N(XTX)−1 =
( m∑
i=1

ni
N
xix

T
i

)−1
.

We make the change of variable wi = ni

N , so the continuous variable wi can be interpreted as the fraction of

experimental effort to spend at xi. Note that the weights wi satisfy
∑m
i=1 wi = 1.

Now, the optimal design of experiment (DoE) is to select the weights that “minimize” the above variance-

covariance matrix, or equivalently, that “maximize” the information matrix

M(w) =

m∑
i=1

wi xix
T
i .

The natural criterion would be to maximize the above matrix for the �Sn+ -ordering. However, in general

this problem is ill-posed, because �Sn+ is not a total order. Instead it has been proposed to maximize some

scalar criterion of the information matrix. If we assume that the errors εi are normally distributed, it can be

seen that the error of estimation δ = θ̂LS − θ lies with high probability in a confidence ellipsoid of the form

{δ ∈ Rn : δTM(w)−1δ ≤ κ},

where κ is a constant depending on the confidence level. We recall that this ellipsoid has semi-axis of lengths

proportional to 1√
λi

, where the λi’s are the eigenvalues of M(w). Two popular criteria for optimal DoE are:

• The D−optimality criterion. This criterion aims at minimizing the volume of the confidence ellipsoids,

which is proportional to
∏
i λ
−1/2
i . This is equivalent to maximize the (nth root of the) determinant

of the information matrix:

ΦD(w) = (detM(w))1/n.

We know that this criterion is SDP-representable. The problem of maximizing ΦD over the set of

weights {w ∈ Rm+ :
∑m
i=1 wi = 1} is hence an SDP.

• The A−optimality criterion aims at minimizing the diagonal of the bounding box of the confidence

ellipsoids:

ΦA(w) =

n∑
i=1

(
1√
λi

)2

=

m∑
i=1

1

λi
= trace M(w)−1
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By using the Schur-complement lemma, the A-optimality DoE problem can be formulated as the

following SDP:

minimize
w∈Rm,Y ∈Sn

traceY

s.t.

[
M(w) In
In Y

]
� 0

m∑
i=1

wi = 1

w ≥ 0.

Proof. This problem is an SDP indeed, because M(w) depends linearly on the decision variable w.

To derive this SDP formulation, we show that ΦA is SDP-representable:

ΦA(w) ≤ t ⇐⇒ ∃Y ∈ Sn :


traceY ≤ t[

M(w) In
In Y

]
� 0.

⇐= : The SC lemma tells us that Y �M(w)−1 (By using the extended SC lemma, we see that M(w) cannot

be singular, because we must have Im In = Rn ⊆ ImM(w)). Then, this implies traceY − traceM(w)−1 ≥
0 =⇒ t ≥ traceY ≥ ΦA(w).

=⇒ The inequality ΦA(w) ≤ t implies that the matrix M(w) is non-singular, because otherwise w is not in

the domain of ΦA, hence ΦA(w) = ∞. Then, setting Y = M(w)−1 yields a feasible solution for the LMI on

the right-hand side.

Note: In fact, there is also an SOCP formulation for the A− and D−optimal DoE problems, but they

are more complicated.
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