Exercise Sheet 5 (due date for Exercises 5.1 - 5.3: Jan. 17)

Exercise 5.1 (Homework)

In the lecture, we studied the SDP relaxation of MAXCUT

$$\begin{aligned} \max_{X} \quad & \frac{1}{4}\langle W, J - X \rangle \\ s.t. \quad & \mathrm{diag}(X) = \mathbf{1} \\ & X \succeq 0. \end{aligned}$$

We will now study an alternative SDP relaxation of MAXCUT. This relaxation relies on the Laplacian matrix of G, defined as

$$L = \sum_{ij \in E} w_{ij} (\boldsymbol{e}_i - \boldsymbol{e}_j) (\boldsymbol{e}_i - \boldsymbol{e}_j)^T.$$

1. Let x be a vector in $\{-1,1\}^n$. Show that

$$\frac{1}{2} \sum_{ij \in E} w_{ij} (1 - x_i x_j) = \frac{1}{4} \sum_{1 \le i, j \le n} L_{ij} x_i x_j,$$

and conclude that the following SDP is a relaxation of MAXCUT:

$$p^* = \max_X \quad \frac{1}{4} \langle L, X \rangle$$

$$s.t. \quad \operatorname{diag}(X) = \mathbf{1}$$

$$X \succeq 0$$

2. Show that the dual of this SDP is

$$d^* = \min_{\boldsymbol{y}} \quad \frac{1}{4} \mathbf{1}^T \boldsymbol{y}$$
$$s.t. \quad L \leq \text{Diag}(\boldsymbol{y})$$

- 3. Does strong duality hold?
- 4. Show that

$$\max(G) \le \frac{n}{4} \lambda_{\max}(L).$$

Exercise 5.2 (Homework)

Copositive programming formulation of the maximum independent set

A conic optimization problem involving the cone C_n (or its dual) is called a *copositive program*. The goal of this exercise is to show that the maximum independent set of a graph can be computed by solving a copositive program. Hence copositive programming is intractable, but it is known that copositive programs can be *approximated* by SDPs. Let G = (V, E) be a simple graph with n vertices. We recall that the stability number satisfies $\alpha(G) \leq \vartheta(G)$, where $\vartheta(G)$ is the Lovasz-theta number of G:

$$\begin{split} \vartheta(G) &= \max_{X} \quad \langle J, X \rangle \\ s.t. \quad \langle I, X \rangle &= 1 \\ X_{ij} &= 0, \qquad \forall ij \in E \\ X \succeq_{\mathbb{S}^n_+} 0. \end{split}$$

In what follows, we will show that $\alpha(G) = \vartheta^*(G)$, where $\vartheta^*(G)$ is the value of the copositive program obtained by replacing the constraint " $X \succeq_{\mathbb{S}^n_+} 0$ " by " $X \succeq_{\mathcal{C}^*_n} 0$ ".

Recall the following definitions: $x \in K$ is an extreme ray of a convex cone K if the only possibility to express x as a barycenter of two other rays $y, z \in K$ is to take $y = \alpha x$ and $z = \beta x$ for some scalars α and β . Similarly, $x \in S$ is an extreme point of a convex set S if the only possibility to express x as a barycenter of two other points $y, z \in S$ is to take x = y = z.

You can use (without proof) the following result:

Let K be a convex cone, and let $H = \{x : a^T x = b\}$ be an hyperplane, with $a \in \text{int} K^*$. Then it holds

$$\operatorname{ext-points}(K \cap H) = \operatorname{ext-rays}(K) \cap H.$$

- 1. Define $\mathcal{K} = \{X \in \mathcal{C}_n^* : \forall ij \in E, X_{ij} = 0\}$, and observe that \mathcal{K} is a cone. Show that X is an extreme ray of \mathcal{K} iff $X = xx^T$ for some $x \in \mathbb{R}^n_+$ supported by a stable set of G (i.e., $S = \{i : x_i \neq 0\}$ is stable).
- 2. Use the result of 1. to identify the set of extreme points of the feasible set of the copositive program for $\vartheta^*(G)$. Conclude that $\vartheta^*(G) = \alpha(G)$.

Exercise 5.3 (Homework)

The partition problem is defined as follows: Given integers a_1, \ldots, a_n , does there exist a subset $S \subseteq [n]$ such that $\sum_{i \in S} a_i = \sum_{i \notin S} a_i$?

An optimization version of this problem is the following:

$$\mathbf{minimize} \quad \left(\sum_{i \in S} a_i - \sum_{i \notin S} a_i \right)^2$$

- 1. Reformulate the problem as a binary quadratic program and formulate an SDP relaxation.
- 2. Show how to change the relaxation to handle the constraint |S| = k.