Approximation 0000000

Compromise Solutions

Kai-Simon Goetzmann

(Joint work with Christina Büsing, Jannik Matuschke and Sebastian Stiller)

MDS status workshop 2012 – February 11

Motivation

- find *balanced* solutions
- reference point methods: part of many state-of-the-art MCDM tools, little theoretical background

Definition (Ideal Point)

Given a multicriteria optimization problem $\max_{y \in \mathcal{Y}} y$, the *ideal point* $y^* = (y_1^*, \dots, y_k^*)$ is defined by

$$y_i^* = \max_{y \in \mathcal{Y}} y_i \qquad \forall \ i.$$

Definition (Compromise Solution, Yu 1973)

Given a multicriteria optimization problem $\max_{y \in \mathcal{Y}} y$ with the ideal point $y^* \in \mathbb{Q}^k$, the compromise colution w.r.t. the norm $\|\cdot\|$ on \mathbb{Q}^k is

$$y^{\mathsf{cs}} = \min_{y \in \mathcal{Y}} \|y^* - y\|.$$

Definition (Compromise Solution, Yu 1973)

Given a multicriteria optimization problem $\max_{y \in \mathcal{Y}} y$ with the ideal point $y^* \in \mathbb{Q}^k$, the compromise colution w.r.t. the norm $\|\cdot\|$ on \mathbb{Q}^k is

$$y^{\mathsf{cs}} = \min_{y \in \mathcal{Y}} \|y^* - y\|.$$

 $p = \infty$

The norms we consider:

 ℓ^p -Norm

$$\|y\|_{p} \coloneqq \left(\sum_{i=1}^{k} y_{i}^{p}\right)^{1/p}, \quad p \in [1, \infty) \qquad (\ell^{p}\text{-Norm})$$
$$\|y\|_{\infty} \coloneqq \max_{i=1,\dots,k} y_{i} \qquad (Maximum \ (\ell^{\infty}\text{-})\text{Norm})$$
$$\|y\|_{p} \coloneqq \|y\|_{\infty} + \frac{1}{p} \|y\|_{1}, \quad p \in [1, \infty] \qquad (Cornered \ p\text{-Norm})$$

Degree of balancing controlled by adjusting p.

Cornered *p*-Norm

The norms we consider:

$$\begin{split} \|y\|_{p} &\coloneqq \left(\sum_{i=1}^{k} y_{i}^{p}\right)^{1/p}, \quad p \in [1, \infty) \\ \|y\|_{\infty} &\coloneqq \max_{i=1, \dots, k} y_{i} \\ \|y\|_{p} &\coloneqq \|y\|_{\infty} + \frac{1}{p} \|y\|_{1}, \quad p \in [1, \infty] \end{aligned} \tag{Maximum } (\ell^{\infty} \text{-}) \text{Norm}) \\ \end{split}$$

Weighted version: For any norm and $\lambda \in \mathbb{Q}^k, \lambda \ge 0, \lambda \ne 0$:

$$||y||^{\lambda} = ||(\lambda_1 y_1, \lambda_2 y_2, \dots, \lambda_k y_k)||.$$

Known Properties

Gearhardt 1979:

- for $p < \infty$ all compromise solutions are Pareto optimal
- $\bullet\,$ all Pareto optimal solution are a compromise solution, for p big enough

1 Introduction

2 Definitions and Notations

3 Approximation

Definition (ε -approximate Pareto set)

$$y_i \leq (1+\varepsilon)y'_i \quad \forall i=1,\ldots,k$$

Definition (ε -approximate Pareto set)

$$y_i \leq (1+\varepsilon)y'_i \quad \forall i=1,\ldots,k$$

Definition (ε -approximate Pareto set)

$$y_i \leq (1+\varepsilon)y'_i \quad \forall i=1,\ldots,k$$

Definition (ε -approximate Pareto set)

$$y_i \leq (1+\varepsilon)y'_i \quad \forall i=1,\ldots,k$$

Definition (ε -approximate Pareto set)

Let \mathcal{Y}_P be the Pareto set of a given instance, and let $\varepsilon > 0$. $\mathcal{Y}_{\varepsilon} \subseteq \mathcal{Y}$ is an ε -approximate Pareto set if for all $y \in \mathcal{Y}_P$ there is $y' \in \mathcal{Y}_{\varepsilon}$ such that

$$y_i \leq (1+\varepsilon)y'_i \quad \forall i=1,\ldots,k$$

Theorem (Papadimitriou&Yannakakis,2000)

There always exists an ε -approximate Pareto set with size polynomial in |I| and $1/\varepsilon$.

Theorem (Papadimitriou&Yannakakis,2000)

There is an efficient algorithm for constructing an ε -approximate Pareto set if and only if the GAP problem is tractable.

Theorem (Papadimitriou&Yannakakis,2000)

There is an efficient algorithm for constructing an ε -approximate Pareto set if and only if the GAP problem is tractable.

Theorem (Papadimitriou&Yannakakis,2000)

There is an efficient algorithm for constructing an ε -approximate Pareto set if and only if the GAP problem is tractable.

Theorem (Papadimitriou&Yannakakis,2000)

There is an efficient algorithm for constructing an ε -approximate Pareto set if and only if the GAP problem is tractable.

From approximate Pareto sets to approximate CS

Goal: Given an ε -approximate Pareto set, find $(1 + \delta)$ -approximation to the compromise solution

From approximate Pareto sets to approximate CS

Goal: Given an ε -approximate Pareto set, find $(1 + \delta)$ -approximation to the compromise solution Problem:

From approximate Pareto sets to approximate CS

Goal: Given an ε -approximate Pareto set, find $(1 + \delta)$ -approximation to the compromise solution Problem:

Approximation 0000000

An alternative objective

Replace $\min_{y \in \mathcal{Y}} \|y^* - y\|$ by

 $\max_{y\in\mathcal{Y}}f(y)\;,$

where

• level sets are maintained: $\|y^* - y\| = \|y^* - y'\| \Rightarrow f(y) = f(y')$

Approximation 0000000

An alternative objective

Replace
$$\min_{y \in \mathcal{Y}} \|y^* - y\|$$
 by

 $\max_{y\in\mathcal{Y}}f(y)\;,$

where

level sets are maintained: ||y* - y|| = ||y* - y'|| ⇒ f(y) = f(y')
f(0) = 0
f(y*) = ||y*||

Approximation 0000000

An alternative objective

Replace
$$\min_{y \in \mathcal{Y}} \|y^* - y\|$$
 by

 $\max_{y\in\mathcal{Y}}f(y)\;,$

where

level sets are maintained: ||y* - y|| = ||y* - y'|| ⇒ f(y) = f(y')
f(0) = 0
f(y*) = ||y*||

$$\Rightarrow f(y) \coloneqq \|y^*\| - \|y^* - y\|$$

From approximate Pareto sets to approximate CS

Theorem

If $\mathcal{Y}_{\varepsilon}$ is an ε -approximate Pareto set for $\max_{y \in \mathcal{Y}} y$, then $\max_{y \in \mathcal{Y}_{\varepsilon}} f(y)$ yields a $(1 + \delta)$ -approximation to $\max_{y \in \mathcal{Y}} f(y)$, for some $\delta \in \Theta(\varepsilon)$.

From approximate CS to approximate Pareto set

Goal: Given FPTAS for CS, solve GAP for given $y \in \mathbb{R}^k$, $\varepsilon > 0$.

From approximate CS to approximate Pareto set

Goal: Given FPTAS for CS, solve GAP for given $y \in \mathbb{R}^k, \varepsilon > 0$. Problem:

From approximate CS to approximate Pareto set

Goal: Given FPTAS for CS, solve GAP for given $y \in \mathbb{R}^k, \varepsilon > 0$. Problem:

From approximate CS to approximate Pareto set

Goal: Given FPTAS for CS, solve GAP for given $y \in \mathbb{R}^k, \varepsilon > 0$. Problem:

Approximation 00000000

Moving the reference point

Solution: Move the reference point

Approximation 0000000

Moving the reference point

Solution: Move the reference point ~ super-ideal reference point

 \dot{y}_1

Approximation

From approximate CS to approximate Pareto set

For
$$\widetilde{y}^* \ge y^*$$
, set $\widetilde{f}(y) \coloneqq \|\widetilde{y}^*\| - \|\widetilde{y}^* - y\|$.

Theorem

If there is an FPTAS for $\max_{y \in \mathcal{Y}} \widetilde{f}(y)$ for any $\widetilde{y}^* \ge y^*$, then the GAP problem for $\max_{y \in \mathcal{Y}} y$ is tractable.

▶ Proof

Approximation

From approximate CS to approximate Pareto set

For
$$\widetilde{y}^* \ge y^*$$
, set $\widetilde{f}(y) \coloneqq \|\widetilde{y}^*\| - \|\widetilde{y}^* - y\|$.

Theorem

If there is an FPTAS for $\max_{y \in \mathcal{Y}} \widetilde{f}(y)$ for any $\widetilde{y}^* \ge y^*$, then the GAP problem for $\max_{y \in \mathcal{Y}} y$ is tractable.

▶ Proof

Theorem

If $\mathcal{Y}_{\varepsilon}$ is an ε -approximate Pareto set for $\max_{y \in \mathcal{Y}} y$, then for any $\widetilde{y}^* \ge y^*$, $\max_{y \in \mathcal{Y}_{\varepsilon}} \widetilde{f}(y)$ yields a $(1 + \delta)$ -approximation to $\max_{y \in \mathcal{Y}} \widetilde{f}(y)$, for some $\delta \in \Theta(\varepsilon)$.

▶ Proof

Approximation 0000000

Summary & Outlook

approximate Pareto set

ideal point

super-ideal ref pt

approximate compromise solutions

Approximation 00000000

Summary & Outlook

Approximation 0000000

Summary & Outlook

Future work:

- Approximation algorithms
- Heuristics

Summary & Outlook

Future work:

- Approximation algorithms
- Heuristics
- Application

Group of *Multicriteria Analysis and Sustainability*, University of Málaga (Sept–Dec 2012)

Summary & Outlook

Future work:

- Approximation algorithms
- Heuristics
- Application

Group of *Multicriteria Analysis and Sustainability*, University of Málaga (Sept–Dec 2012)

Thank you for your attention.

Set $\widetilde{y}^* = C \cdot y$ such that $\widetilde{y}^* \ge y^*$. Let y' be a $(1 + \delta)$ -approximation for $\max_{y'' \in \mathcal{Y}} \widetilde{f}(y'')$ with $y' \not\ge y$.

Set $\widetilde{y}^* = C \cdot y$ such that $\widetilde{y}^* \ge y^*$. Let y' be a $(1 + \delta)$ -approximation for $\max_{y'' \in \mathcal{Y}} \widetilde{f}(y'')$ with $y' \not\ge y$.

$$\forall y'' \in \mathcal{Y} : \widetilde{f}(y'') \leq (1+\delta)\widetilde{f}(y')$$
$$\leq (1+\delta)\widetilde{f}(y)$$
$$= (1+\delta)(\|\widetilde{y}^*\| - \|\widetilde{y}^* - y\|)$$
$$= (1+\delta)(C \cdot \|y\| - (C-1)\|y\|)$$
$$= (1+\delta) \|y\|$$

Set $\widetilde{y}^* = C \cdot y$ such that $\widetilde{y}^* \ge y^*$. Let y' be a $(1 + \delta)$ -approximation for $\max_{y'' \in \mathcal{Y}} \widetilde{f}(y'')$ with $y' \not\ge y$.

$$\forall y'' \in \mathcal{Y} : \widetilde{f}(y'') \leq (1+\delta)\widetilde{f}(y')$$

$$\leq (1+\delta)\widetilde{f}(y)$$

$$= (1+\delta)(\|\widetilde{y}^*\| - \|\widetilde{y}^* - y\|)$$

$$= (1+\delta)(C \cdot \|y\| - (C-1)\|y\|)$$

$$= (1+\delta)\|y\|$$

$$\widetilde{f}((1+\varepsilon)y) = \|\widetilde{y^*}\| - \|\widetilde{y^*} - (1+\varepsilon)y\|$$
$$= C \cdot \|y\| - (C - (1+\varepsilon)) \|y\|$$
$$= (1+\varepsilon) \|y\|$$

Back

Let $\mathcal{Y}_{\varepsilon}$ be an ε -approximate Pareto set, $y' = \operatorname{argmax}_{y \in \mathcal{Y}_{\varepsilon}} \widetilde{f}(y)$. y^{cs} Pareto optimal $\Rightarrow \exists \overline{y} \in \mathcal{Y}_{\varepsilon}$ with $\overline{y} \ge (1 - \varepsilon)y^{cs}$, w.l.o.g. $\overline{y} = (1 - \varepsilon)y^{cs}$. We need

$$\|\widetilde{y}^*\| - \|\widetilde{y}^* - \overline{y}\| = \widetilde{f}(\overline{y}) \ge (1 - \delta)\widetilde{f}(y^{\mathsf{cs}}) = (1 - \delta)(\|\widetilde{y}^*\| - \|\widetilde{y}^* - y^{\mathsf{cs}}\|),$$

or equivalently

$$\|\widetilde{y}^* - \overline{y}\| \le \|\widetilde{y}^* - y^{\mathsf{CS}}\| + \delta(\|\widetilde{y}^*\| - \|\widetilde{y}^* - y^{\mathsf{CS}}\|).$$

