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Motivation

find balanced solutions

reference point methods:
part of many state-of-the-art MCDM tools,
little theoretical background
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Definition (Ideal Point)

Given a multicriteria optimization problem maxy∈Y y,
the ideal point y∗ = (y∗1 , . . . , y

∗
k) is defined by

y∗i = max
y∈Y

yi ∀ i.

y1

y2

Y

y∗
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Definition (Compromise Solution, Yu 1973)

Given a multicriteria optimization problem maxy∈Y y with the ideal
point y∗ ∈Qk, the compromise colution w.r.t. the norm ∥⋅∥ on Qk

is
ycs = min

y∈Y
∥y∗ − y∥ .

y1

y2 y∗
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The norms we consider:

∥y∥p ∶= (
k

∑
i=1
ypi )

1/p
, p ∈ [1,∞) (`p-Norm)

∥y∥∞ ∶= max
i=1,...,k

yi (Maximum (`∞-)Norm)

∣∣∣y∣∣∣p ∶= ∥y∥∞ +
1

p
∥y∥1 , p ∈ [1,∞] (Cornered p-Norm)

`p-Norm

1

1

Cornered p-Norm

1

1

p = 1
p = 2
p = 5
p = ∞

Degree of balancing controlled by adjusting p.
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The norms we consider:

∥y∥p ∶= (
k

∑
i=1
ypi )

1/p
, p ∈ [1,∞) (`p-Norm)

∥y∥∞ ∶= max
i=1,...,k

yi (Maximum (`∞-)Norm)

∣∣∣y∣∣∣p ∶= ∥y∥∞ +
1

p
∥y∥1 , p ∈ [1,∞] (Cornered p-Norm)

Weighted version: For any norm and λ ∈Qk, λ ≥ 0, λ ≠ 0 ∶

∥y∥λ = ∥(λ1y1, λ2y2, . . . , λkyk)∥ .
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Known Properties

Gearhardt 1979:

for p < ∞ all compromise solutions are Pareto optimal

all Pareto optimal solution are a compromise solution,
for p big enough

y1

y2

YP
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Approximate Pareto sets

Definition (ε-approximate Pareto set)

Let YP be the Pareto set of a given instance, and let ε > 0.
Yε ⊆ Y is an ε-approximate Pareto set if for all y ∈ YP there is
y′ ∈ Yε such that

yi ≤ (1 + ε)y′i ∀i = 1, . . . , k
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Approximate Pareto sets

Definition (ε-approximate Pareto set)

Let YP be the Pareto set of a given instance, and let ε > 0.
Yε ⊆ Y is an ε-approximate Pareto set if for all y ∈ YP there is
y′ ∈ Yε such that

yi ≤ (1 + ε)y′i ∀i = 1, . . . , k

Theorem (Papadimitriou&Yannakakis,2000)

There always exists an ε-approximate Pareto set
with size polynomial in ∣I ∣ and 1/ε.
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How to find approximate Pareto sets

Theorem (Papadimitriou&Yannakakis,2000)

There is an efficient algorithm for constructing an ε-approximate
Pareto set if and only if the Gap problem is tractable.

Gap problem: Given y ∈Qk and ε > 0.

y1

y2

(1 + ε)y
no sol’n

y
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From approximate Pareto sets to approximate CS

Goal: Given an ε-approximate Pareto set,
find (1 + δ)-approximation to the compromise solution

Problem:

y1

y2
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An alternative objective

Replace miny∈Y ∥y∗ − y∥ by

max
y∈Y

f(y) ,

where

level sets are maintained:
∥y∗ − y∥ = ∥y∗ − y′∥ ⇒ f(y) = f(y′)

f(0) = 0

f(y∗) = ∥y∗∥

⇒ f(y) ∶= ∥y∗∥ − ∥y∗ − y∥
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From approximate Pareto sets to approximate CS

Theorem

If Yε is an ε-approximate Pareto set for maxy∈Y y, then
maxy∈Yε f(y) yields a (1 + δ)-approximation to maxy∈Y f(y),
for some δ ∈ Θ(ε).
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From approximate CS to approximate Pareto set

Goal: Given FPTAS for CS, solve Gap for given y ∈Rk, ε > 0.

Problem:

y1

y2

ỹ
∼ δ
ỹ∼ δ

y∗

y

y′

(1 + ε)y
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Moving the reference point

Solution: Move the reference point

↝ super-ideal reference point

y1

y2

y1

y2

y
(1 + ε)y

y∗

ỹ∗y∗
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From approximate CS to approximate Pareto set

For ỹ∗ ≥ y∗, set f̃(y) ∶= ∥ỹ∗∥ − ∥ỹ∗ − y∥.

Theorem

If there is an FPTAS for maxy∈Y f̃(y) for any ỹ∗ ≥ y∗,
then the Gap problem for maxy∈Y y is tractable.

Proof

Theorem

If Yε is an ε-approximate Pareto set for maxy∈Y y, then for any
ỹ∗ ≥ y∗, maxy∈Yε f̃(y) yields a (1 + δ)-approximation to
maxy∈Y f̃(y), for some δ ∈ Θ(ε).

Proof
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Summary & Outlook

approximate Pareto set

ideal point

⇓ 	 ⇓ ⇑

super-ideal ref pt

approximate compromise solutions

Future work:

Approximation algorithms

Heuristics

Application
Group of Multicriteria Analysis and Sustainability,
University of Málaga (Sept–Dec 2012)

Thank you for your attention.
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Set ỹ∗ = C ⋅ y such that ỹ∗ ≥ y∗.
Let y′ be a (1 + δ)-approximation for maxy′′∈Y f̃(y′′) with y′ ≱ y.

∀ y′′ ∈ Y ∶ f̃(y′′) ≤ (1 + δ)f̃(y′)

≤ (1 + δ)f̃(y)

= (1 + δ)(∥ỹ∗∥ − ∥ỹ∗ − y∥)
= (1 + δ)(C ⋅ ∥y∥ − (C − 1) ∥y∥)

= (1 + δ) ∥y∥

f̃((1 + ε)y) = ∥ỹ∗∥ − ∥ỹ∗ − (1 + ε)y∥

= C ⋅ ∥y∥ − (C − (1 + ε)) ∥y∥

= (1 + ε) ∥y∥

Back
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Let Yε be an ε-approximate Pareto set, y′ = argmaxy∈Yε f̃(y).
ycs Pareto optimal
⇒ ∃ȳ ∈ Yε with ȳ ≥ (1 − ε)ycs, w.l.o.g. ȳ = (1 − ε)ycs.
We need

∥ỹ∗∥ − ∥ỹ∗ − ȳ∥ = f̃(ȳ) ≥ (1 − δ)f̃(ycs) = (1 − δ)(∥ỹ∗∥ − ∥ỹ∗ − ycs∥) ,

or equivalently

∥ỹ∗ − ȳ∥ ≤ ∥ỹ∗ − ycs∥ + δ(∥ỹ∗∥ − ∥ỹ∗ − ycs∥) .

Back
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∥ỹ∗ − ȳ∥
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

d

≤ ∥ỹ∗ − ycs∥
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

+δ (∥ỹ∗∥ − ∥ỹ∗ − ycs∥)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

c′

a

c

d b
c′

εa

d b

d′
c′

d′

c′′c′′

0 ȳ ycs

ỹ∗

Show d′ ≤ δc′.

d′

εa
=
c′′

a

≤
c′

a

c′′

c′
=
d − d′

c − c′

=
d − d′

b
≤ 1

Back
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

c′

a

c

d b

c′

εa

d b

d′

c′

d′

c′′c′′
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´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

d
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0 ȳ ycs
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∥ỹ∗ − ȳ∥
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0 ȳ ycs
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

c′

a

c

d b
c′

εa

d b

d′

c′

d′

c′′

c′′
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