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Exercise 9 (6 points). Let A ∈ Rm×n with rank(A) = m, b ∈ Rm and c ∈ Rn. Consider the
linear program in standard form

min cT · x
s.t. A · x = b

x ≥ 0

and assume that the columns A1, . . . , Am of A form an optimal basis. Now the first column A1

is changed to A1 + δ · A0 for some A0 ∈ Rm and δ ∈ R. Consider the matrix B(δ) ∈ Rm×m

consisting of the columns A1 +δ ·A0, A2, . . . , Am. Let δ1 < 0 < δ2 such that B(δ) is non-singular
for all δ1 ≤ δ ≤ δ2. Show that the subset of the interval [δ1, δ2] for which B(δ) is an optimal
basis is again a closed interval.

Exercise 10 (2+2+2 points). For fixed θ ∈ R≥0 consider the linear programming problem

min x1 + x2

s.t. x1 + 2x2 = θ

x1, x2 ≥ 0

a) Find an optimal solution for all values of θ.

b) Draw a graph showing the optimal cost as a function of θ.

c) Use the picture in b) to obtain the set of all dual optimal solutions, for every value of θ.

Exercise 11 (3+2+3 points). Let A ∈ Rm×n, b ∈ Rm, and c, d ∈ Rn \ {0}. For θ ∈ R consider
the following parametric program:

g(θ) := min (c+ θ · d)T · x
s.t. A · x = b

x ≥ 0

a) Let θ1 < θ2 and suppose that g(θ) is linear for θ ∈ [θ1, θ2]. Is it true that there exists a
unique optimal solution when θ1 < θ < θ2? Prove or provide a counterexample.

b) Suppose that for some value of θ, there are exactly two distinct basic feasible solutions that
are optimal. Is it true that they must be adjacent? Prove or provide a counterexample.

c) Let θ∗ be a breakpoint of the function g(θ). Let x1, x2, x3 be pairwise different basic feasible
solutions, all of which are optimal for θ = θ∗. Suppose that x1 is a unique optimal solution
for θ < θ∗, x3 is a unique optimal solution for θ > θ∗, and x1, x2, x3 are the only basic feasible
solutions for θ = θ∗. Provide an example to show that x1 and x3 need not be adjacent.
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Exercise 12 (tutorial session). For θ ∈ R, consider the following linear program:

min 4x1 + 5x3
s.t. 2x1 + x2 − 5x3 = 1− 2 θ

−3x1 + 4x3 + x4 = 2− 3 θ
x1, x2, x3, x4 ≥ 0

a) For fixed θ := 0, write down a simplex tableau and find an optimal solution. Is it unique?

b) For fixed θ := 0, write down the dual problem and find an optimal solution. Is it unique?

c) Find an optimal solution and the value of the optimal cost as a function of θ ∈ R.

Exercise 13 (tutorial session). For δ ∈ R consider the following linear program:

min −5x1 − x2 + 12x3
s.t. (3 + δ)x1 + 2x2 + x3 = 10

5x1 + 3x2 + x4 = 16
x1, x2, x3, x4 ≥ 0

For δ := 0 set up a simplex tableau and solve the linear program (observe that x1 and x2 are
the basic variables in an optimal solution). Let us keep x1 and x2 as the basic variables and let
B(δ) be the corresponding basis matrix, as a function of δ (for small values of δ).

a) Compute B(δ)−1 · b. For which values of δ is B(δ) a feasible basis?

b) Compute cB
T ·B(δ)−1. For which values of δ is B(δ) an optimal basis?

c) Determine the optimal cost, as a function of δ, when δ is restricted to those values for
which B(δ) is an optimal basis matrix.

Exercise 14 (tutorial session). Let A ∈ Rm×n with rank(A) = m, b ∈ Rm, and c ∈ Rn.
Consider the following linear program in standard form:

min cT · x
s.t. A · x = b

x ≥ 0

Suppose that the first m columns A1, . . . , Am of A form an optimal basis B ∈ Rm×m that leads
to a non-degenerate optimal solution x∗, and a non-degenerate dual optimal solution p. We now
change the first entry a11 of A1 to a11 + δ, for some δ ∈ R. Let E ∈ Rm×m with entries all zero
except for the top left entry e11 which is equal to 1.

a) Show that if δ is small enough, B + δ · E is a basis matrix for the new problem.

b) Show that under the basis B + δ · E, the vector xB of basic variables in the new problem is
equal to (I + δ ·B−1 · E)−1 ·B−1 · b.

c) Show that if δ is sufficiently small, B + δ · E is an optimal basis for the new problem.
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