Trivial Results using Complicated Methods

Angelika Wiegele
Alpen-Adria-Universität Klagenfurt
27 September 2019
Berlin

joint work with
Elisabeth Gaar, Daniel Krenn, Susan Margulies
Thanks to Elli for sharing her slides!
Tackling Vizing’s Conjecture — Road Map
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
2 - Split
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
2 - Split
3 - Algebraic Model
4 -
5 -
6 -
7 -
8 -
9 -
10 -
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
2 - Split
3 - Algebraic Model
4 - Sum of Squares
5 -
6 -
7 -
8 -
9 -
10 -
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
2 - Split
3 - Algebraic Model
4 - Sum of Squares
5 - Semidefinite Programming
6 -
7 -
8 -
9 -
10 -
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
2 - Split
3 - Algebraic Model
4 - Sum of Squares
5 - Semidefinite Programming
6 - SDP Solver

7 -
8 -
9 -
10 -
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
2 - Split
3 - Algebraic Model
4 - Sum of Squares
5 - Semidefinite Programming
6 - SDP Solver
7 - Guess
8 -
9 -
10 -
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
2 - Split
3 - Algebraic Model

4 - Sum of Squares
5 - Semidefinite Programming
6 - SDP Solver

7 - Guess
8 - SAGE
9 -
10 -
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
2 - Split
3 - Algebraic Model
4 - Sum of Squares
5 - Semidefinite Programming
6 - SDP Solver
7 - Guess
8 - SAGE
9 - Prove
10 -
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
2 - Split
3 - Algebraic Model
4 - Sum of Squares
5 - Semidefinite Programming
6 - SDP Solver
7 - Guess
8 - SAGE
9 - Prove
10 - Generalize
Let $G = (V, E)$ be a graph.
Let $G = (V, E)$ be a graph.

- A set $D \subseteq V$ is called a dominating set if for each $v \in V$
 - $v \in D$ or
 - there is an $u \in D$ such that $\{u, v\} \in E$.

Dominating Sets

Definition

Let $G = (V, E)$ be a graph.

- A set $D \subseteq V$ is called a dominating set if for each $v \in V$
 - $v \in D$ or
 - there is an $u \in D$ such that $\{u, v\} \in E$.

The domination number $\gamma(G)$ is the cardinality of a minimum dominating set.
Dominating Sets

Definition

Let $G = (V, E)$ be a graph.

- A set $D \subseteq V$ is called dominating set if for each $v \in V$
 - $v \in D$ or
 - there is an $u \in D$ such that $\{u, v\} \in E$.

The domination number $\gamma(G)$ is the cardinality of a minimum dominating set.
Dominating Sets

Definition

Let $G = (V, E)$ be a graph.

- A set $D \subseteq V$ is called **dominating set** if for each $v \in V$
 - $v \in D$ or
 - there is an $u \in D$ such that $\{u, v\} \in E$.

- A dominating set $D^* \subseteq V$ is called **minimum dominating set** if $|D^*| \leq |D|$ for all dominating sets D.

- The domination number $\gamma(G)$ is the cardinality of a minimum dominating set.

![Diagram of a graph with nodes 1 to 9, illustrating no dominating set.](#)
Dominating Sets

Definition

Let $G = (V, E)$ be a graph.
- A set $D \subseteq V$ is called *dominating set* if for each $v \in V$
 - $v \in D$ or
 - there is an $u \in D$ such that $\{u, v\} \in E$.

The domination number $\gamma(G)$ is the cardinality of a minimum dominating set.
Dominating Sets

Definition

Let $G = (V, E)$ be a graph.

- A set $D \subseteq V$ is called dominating set if for each $v \in V$
 - $v \in D$ or
 - there is an $u \in D$ such that $\{u, v\} \in E$.

- A dominating set $D^* \subseteq V$ is called minimum dominating set if
 $|D^*| \leq |D|$ for all dominating sets D.

- The domination number $\gamma(G)$ is the cardinality of a minimum dominating set.
Dominating Sets

Definition

Let $G = (V, E)$ be a graph.

- A set $D \subseteq V$ is called **dominating set** if for each $v \in V$
 - $v \in D$ or
 - there is an $u \in D$ such that $\{u, v\} \in E$.
- A dominating set $D^* \subseteq V$ is called **minimum dominating set** if
 - $|D^*| \leq |D|$ for all dominating sets D.

The domination number $\gamma(G)$ is the cardinality of a minimum dominating set.
Dominating Sets

Definition

Let $G = (V, E)$ be a graph.

- A set $D \subseteq V$ is called **dominating set** if for each $v \in V$
 - $v \in D$ or
 - there is an $u \in D$ such that $\{u, v\} \in E$.

- A dominating set $D^* \subseteq V$ is called **minimum dominating set** if
 - $|D^*| \leq |D|$ for all dominating sets D.

The domination number $\gamma(G)$ is the cardinality of a minimum dominating set.
Dominating Sets

Definition

Let \(G = (V, E) \) be a graph.

- A set \(D \subseteq V \) is called **dominating set** if for each \(v \in V \)
 - \(v \in D \) or
 - there is an \(u \in D \) such that \(\{u, v\} \in E \).

- A dominating set \(D^* \subseteq V \) is called **minimum dominating set** if
 - \(|D^*| \leq |D| \) for all dominating sets \(D \).

\[\gamma(G) = 3 \]
Dominating Sets

Definition

Let $G = (V, E)$ be a graph.

- A set $D \subseteq V$ is called dominating set if for each $v \in V$
 - $v \in D$ or
 - there is an $u \in D$ such that $\{u, v\} \in E$.

- A dominating set $D^* \subseteq V$ is called minimum dominating set if
 - $|D^*| \leq |D|$ for all dominating sets D.

The domination number $\gamma(G)$ is the cardinality of a minimum dominating set.
Dominating Sets

Definition

Let $G = (V, E)$ be a graph.

- A set $D \subseteq V$ is called **dominating set** if for each $v \in V$
 - $v \in D$ or
 - there is an $u \in D$ such that $\{u, v\} \in E$.

- A dominating set $D^* \subseteq V$ is called **minimum dominating set** if
 - $|D^*| \leq |D|$ for all dominating sets D.

- The **domination number** $\gamma(G)$ is
 - the cardinality of a minimum dominating set.
Dominating Sets

Definition

Let $G = (V, E)$ be a graph.

A set $D \subseteq V$ is called a dominating set if for each $v \in V$
- $v \in D$ or
- there is an $u \in D$ such that $\{u, v\} \in E$.

A dominating set $D^* \subseteq V$ is called a minimum dominating set if
- $|D^*| \leq |D|$ for all dominating sets D.

The domination number $\gamma(G)$ is
- the cardinality of a minimum dominating set.

\[\gamma(G) = 3 \]
Let $G = (V(G), E(G))$ and $H = (V(H), E(H))$ be graphs.
Cartesian Product Graphs

Definition

Let $G = (V(G), E(G))$ and $H = (V(H), E(H))$ be graphs. The **Cartesian product graph** $G \Box H$ has

- vertex set $V(G) \times V(H)$ and
- the edge set

$$E(G \Box H) = \{(gh, g'h') : g = g' \text{ and } (h, h') \in E(H), \text{ or } h = h' \text{ and } (g, g') \in E(G)\}.$$
Cartesian Product Graphs

Definition

Let $G = (V(G), E(G))$ and $H = (V(H), E(H))$ be graphs. The **Cartesian product graph** $G \square H$ has

- vertex set $V(G) \times V(H)$ and
- the edge set

$$E(G \square H) = \{(gh, g'h') : g = g' \text{ and } (h, h') \in E(H), \text{ or } h = h' \text{ and } (g, g') \in E(G)\}.$$
Example 1

Example 2
Cartesian Product Graphs and Domination Number

Example 1

\[\gamma(G) = 1 \]
\[\gamma(H) = 1 \]
\[\gamma(G \square H) = 2 \]

Example 2

\[\gamma(G) = 2 \]
\[\gamma(H) = 2 \]
\[\gamma(G \square H) = 4 \]
Cartesian Product Graphs and Domination Number

Example 1

\[\gamma(G) = 1 \]
\[\gamma(H) = 1 \]
\[\gamma(G \Box H) = 2 \]
\[\gamma(G)\gamma(H) < \gamma(G \Box H) \]

Example 2

\[\gamma(G) = 2 \]
\[\gamma(H) = 2 \]
\[\gamma(G \Box H) = 4 \]
\[\gamma(G)\gamma(H) = \gamma(G \Box H) \]
Vizing's Conjecture

Conjecture (Vizing, 1968)

Given graphs G and H, then the inequality

$$\gamma(G) \gamma(H) \leq \gamma(G \Box H)$$

holds.
Glimpse at History of Vizing’s Conjecture

- **1968**: Vizing
 - proposes conjecture

- **1979**: Barcalkin and German
 - ✓ for decomposable graphs

- **1990**: Faudree, Schelp and Shreve
 - ✓ for graphs that satisfy a special “coloring property”

- **2000**: Clark and Suen
 - $\gamma(G)\gamma(H) \leq 2\gamma(G\Box H)$

- **2003**: Sun
 - ✓ for graphs with $\gamma(G) \leq 3$

- **2009**: Bresar, Dorbec, Goddard, Hartnell, Henning, Klavzar, Rall
 - summarize properties of a minimum counterexample

- **2019**: Zerbib
 - $\gamma(G)\gamma(H) + \max\{\gamma(G),\gamma(H)\} \leq 2\gamma(G\Box H)$
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
2 - Split
3 - Algebraic Model
4 - Sum of Squares
5 - Semidefinite Programming
6 - SDP Solver
7 - Guess
8 - SAGE
9 - Prove
10 - Generalize
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
\[\gamma(G) \gamma(H) \leq \gamma(G \square H) \]

2 - Split

3 - Algebraic Model

4 - Sum of Squares

5 - Semidefinite Programming

6 - SDP Solver

7 - Guess

8 - SAGE

9 - Prove

10 - Generalize
Split Vizing’s Conjecture

Conjecture (Vizing, 1968)

Let G and H be graphs. Then

$$\gamma(G) \gamma(H) \leq \gamma(G \square H).$$
Split Vizing’s Conjecture

Conjecture (Vizing, 1968)

Let G and H be graphs. Then

\[\gamma(G) \gamma(H) \leq \gamma(G \Box H). \]

Definition

- For given $n_G, k_G \in \mathbb{N}$ with $k_G \leq n_G$
 - let G be the class of graphs with
 - n_G vertices and
 - domination number k_G.

Split Vizing’s Conjecture

Conjecture (Vizing, 1968)

Let G and H be graphs. Then

$$\gamma(G) \gamma(H) \leq \gamma(G \Box H).$$

Definition

- For given $n_G, k_G \in \mathbb{N}$ with $k_G \leq n_G$
 - let G be the class of graphs with
 - n_G vertices and
 - domination number k_G.

- For given $n_H, k_H \in \mathbb{N}$ with $k_H \leq n_H$
 - let H be the class of graphs with
 - n_H vertices and
 - domination number k_H.
Split Vizing’s Conjecture

Conjecture (Vizing, 1968)

Let G and H be graphs. Then

$$\gamma(G) \gamma(H) \leq \gamma(G \Box H).$$

Observation

Vizing’s conjecture holds iff

- for all values of $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$
 - for all $G \in \mathcal{G}$ and for all $H \in \mathcal{H}$
 - $\gamma(G) \gamma(H) \leq \gamma(G \Box H)$ holds.
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
\[\gamma(G) \gamma(H) \leq \gamma(G \boxplus H) \]

2 - Split

3 - Algebraic Model

4 - Sum of Squares

5 - Semidefinite Programming

6 - SDP Solver

7 - Guess

8 - SAGE

9 - Prove

10 - Generalize
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
\(\gamma(G)\gamma(H) \leq \gamma(G \square H) \)

2 - Split
\(n_G, k_G, n_H, k_H \)

3 - Algebraic Model

4 - Sum of Squares

5 - Semidefinite Programming

6 - SDP Solver

7 - Guess

8 - SAGE

9 - Prove

10 - Generalize
General Introduction: Ideals and Varieties

Definition

- Let $P[x] = \mathbb{K}[x_1, \ldots, x_n]$ be a polynomial ring in n variables over the field \mathbb{K}.
- A subset $I \subseteq P[x]$ is called an **ideal** of $P[x]$ if it satisfies
 - $0 \in I$,
 - if $a, b \in I$, then $a + b \in I$,
 - if $a \in I$ and $b \in P[x]$, then $a \cdot b \in I$.

Variety of an Ideal

- The **variety** of the ideal I is defined as the set $V(I) = \{z \in \mathbb{K}^n : f(z) = 0 \text{ for all } f \in I\}$ with \mathbb{K} being the algebraic closure of \mathbb{K}.
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (P[x] = \mathbb{K}[x_1, \ldots, x_n]) be a polynomial ring in (n) variables over the field (\mathbb{K}).</td>
</tr>
<tr>
<td>Let (f_1, \ldots, f_s \in P[x]). Then the ideal generated by the system of equations (f_1 = 0, \ldots, f_s = 0) is defined as</td>
</tr>
<tr>
<td>[{ f : f = g_1 f_1 + \cdots + g_s f_s, ; g_i \in P[x] }].</td>
</tr>
</tbody>
</table>
General Introduction: Ideals and Varieties

Definition

- Let \(P[x] = \mathbb{K}[x_1, \ldots, x_n] \) be a polynomial ring in \(n \) variables over the field \(\mathbb{K} \).
- Let \(f_1, \ldots, f_s \in P[x] \). Then the ideal generated by the system of equations \(f_1 = 0, \ldots, f_s = 0 \) is defined as

\[
\{ f : f = g_1 f_1 + \cdots + g_s f_s, \; g_i \in P[x] \}.
\]

Definition

- Let \(I \subseteq P[x] \) be an ideal of the polynomial ring \(P[x] \).
- The variety of the ideal \(I \) is defined as the set

\[
\mathcal{V}(I) = \{ z \in \overline{\mathbb{K}}^n : f(z) = 0 \text{ for all } f \in I \}
\]

with \(\overline{\mathbb{K}} \) being the algebraic closure of \(\mathbb{K} \).
Ideal I_G

Definition

\[\text{Let } n_G, k_G \in \mathbb{N} \text{ with } k_G \leq n_G. \]

\[\text{Let } V(G) = \{1, 2, \ldots, n_G\} \text{ and } D_G = \{1, 2, \ldots, k_G\}. \]

\[\text{Let } e_G = \{e_{gg'} : \{g, g'\} \subseteq V(G)\}. \]

The ideal $I_G \subseteq \mathbb{K}[e_G]$ is defined by the system of equations

\[e_{gg'}^2 - e_{gg'} = 0 \quad \forall \{g, g'\} \subseteq V(G) \]

\[\prod_{g' \in D_G} (1 - e_{gg'}) = 0 \quad \forall g \in V(G) \setminus D_G, \]

\[\prod_{g' \in V(G)} (\sum_{g \in S} e_{gg'}) = 0 \quad \forall S \subseteq V(G) \text{ with } |S| = k_G - 1. \]

Theorem (Gaar, Krenn, Margulies, W. 2019)

The points in the variety $V(I_G)$ are in bijection to the graphs in G.

\[e_{gg'} = \begin{cases} 1 & \text{if } \{g, g'\} \text{ is an edge} \\ 0 & \text{otherwise} \end{cases} \]
Definition

Let $n_g, k_g \in \mathbb{N}$ with $k_g \leq n_g$.

Theorem (Gaar, Krenn, Margulies, W. 2019)

The points in the variety $V(I_G)$ are in bijection to the graphs in G.

Ideal I_G
Ideal I_G

Definition

- Let $n_g, k_g \in \mathbb{N}$ with $k_g \leq n_g$.
- Let $V(G) = \{1, 2, \ldots, n_g\}$ and $D_g = \{1, 2, \ldots, k_g\}$.

Theorem (Gaar, Krenn, Margulies, W. 2019)

The points in the variety $V(I_G)$ are in bijection to the graphs in G.

\[e_{gg'} = \begin{cases} 1 & \text{if } \{g, g'\} \text{ is an edge} \\ 0 & \text{otherwise} \end{cases} \]
Ideal I_G

Definition

- Let $n_G, k_G \in \mathbb{N}$ with $k_G \leq n_G$.
- Let $V(G) = \{1, 2, \ldots, n_G\}$ and $D_G = \{1, 2, \ldots, k_G\}$.
- Let $e_G = \{e_{gg'} : \{g, g'\} \subseteq V(G)\}$.
Ideal I_G

Definition

- Let $n_G, k_G \in \mathbb{N}$ with $k_G \leq n_G$.
- Let $V(G) = \{1, 2, \ldots, n_G\}$ and $D_G = \{1, 2, \ldots, k_G\}$.
- Let $e_G = \{e_{gg'} : \{g, g'\} \subseteq V(G)\}$.

$$e_{gg'} = \begin{cases} 1 & \text{if } \{g, g'\} \text{ is an edge} \\ 0 & \text{otherwise} \end{cases}$$
Ideal I_G

Definition

- Let $n_G, k_G \in \mathbb{N}$ with $k_G \leq n_G$.
- Let $V(G) = \{1, 2, \ldots, n_G\}$ and $D_G = \{1, 2, \ldots, k_G\}$.
- Let $e_G = \{e_{gg'} : \{g, g'\} \subseteq V(G)\}$.
- The ideal $I_G \subseteq \mathbb{K}[e_G]$ is defined by the system of equations

\[
\begin{align*}
 e_{gg'}^2 - e_{gg'} &= 0 \quad \forall \{g, g'\} \subseteq V(G) \\
 \prod_{g' \in D_G} (1 - e_{gg'}) &= 0 \quad \forall g \in V(G) \setminus D_G, \\
 \prod_{g' \in V(G) \setminus S} \left(\sum_{g \in S} e_{gg'} \right) &= 0 \quad \forall S \subseteq V(G) \text{ with } |S| = k_G - 1.
\end{align*}
\]

\[
e_{gg'} = \begin{cases}
 1 & \text{if } \{g, g'\} \text{ is an edge} \\
 0 & \text{otherwise}
\end{cases}
\]
Definition

- Let $n_G, k_G \in \mathbb{N}$ with $k_G \leq n_G$.
- Let $V(G) = \{1, 2, \ldots, n_G\}$ and $D_G = \{1, 2, \ldots, k_G\}$.
- Let $e_G = \{e_{gg'} : \{g, g'\} \subseteq V(G)\}$.
- The ideal $I_G \subseteq \mathbb{K}[e_G]$ is defined by the system of equations

 $e_{gg'}^2 - e_{gg'} = 0 \quad \forall \{g, g'\} \subseteq V(G)$

 $\prod_{g' \in D_G} (1 - e_{gg'}) = 0 \quad \forall g \in V(G) \setminus D_G$,

 $\prod_{g' \in V(G) \setminus S} \left(\sum_{g \in S} e_{gg'} \right) = 0 \quad \forall S \subseteq V(G)$ with $|S| = k_G - 1$.

$e_{gg'} = \begin{cases}
1 & \text{if } \{g, g'\} \text{ is an edge} \\
0 & \text{otherwise}
\end{cases}$

Theorem (Gaar, Krenn, Margulies, W. 2019)

The points in the variety $\mathcal{V}(I_G)$ are in bijection to the graphs in G.
Ideal $I_{G\Box H}$

Definition

- Let $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$.

$$x_{gh} = \begin{cases}
1 & \text{if vertex } gh \text{ is in the dominating set of } G\Box H \\
0 & \text{otherwise}
\end{cases}$$
Definition

- Let $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$.
- Let $x_{G \square H} = \{x_{gh} : g \in V(G), h \in V(H)\}$.
Ideal $I_{G \square H}$

Definition

- Let $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$.
- Let $x_{G \square H} = \{x_{gh} : g \in V(G), h \in V(H)\}$.

$$x_{gh} = \begin{cases}
1 & \text{if vertex } gh \text{ is in the dominating set of } G \square H \\
0 & \text{otherwise}
\end{cases}$$
Ideal \(I_{G \Box H} \)

Definition

- Let \(n_G, k_G, n_H, k_H \in \mathbb{N} \) with \(k_G \leq n_G \) and \(k_H \leq n_H \).
- Let \(x_{G \Box H} = \{ x_{gh} : g \in V(G), h \in V(H) \} \).
- The ideal \(I_{G \Box H} \subseteq \mathbb{K}[e_G, e_H, x_{G \Box H}] \) is defined by

\[
\begin{align*}
 x_{gh}^2 - x_{gh} &= 0, \\
 (1 - x_{gh}) \left(\prod_{g' \in V(G), g' \neq g} (1 - e_{gg'} x_{g'h}) \right) \left(\prod_{h' \in V(H), h' \neq h} (1 - e_{hh'} x_{gh'}) \right) &= 0.
\end{align*}
\]

for all \(g \in V(G) \) and all \(h \in V(H) \).

\[
x_{gh} = \begin{cases}
 1 & \text{if vertex } gh \text{ is in the dominating set of } G \Box H \\
 0 & \text{otherwise}
\end{cases}
\]
Definition

- Let $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$.
Ideal I_{viz}

Definition

- Let $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$.
- Let I_{viz} be the ideal generated by the generators of I_G, I_H and $I_{G \Box H}$.
Ideal I_{viz}

Definition

- Let $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$.
- Let I_{viz} be the ideal generated by the generators of I_G, I_H and $I_{G \square H}$.

Theorem (Gaar, Krenn, Margulies, W. 2019)

The points in the variety $\mathcal{V}(I_{\text{viz}})$ are in bijection to the triples (G, H, D) where
Definition

- Let $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$.
- Let I_{viz} be the ideal generated by the generators of I_G, I_H and $I_{G \square H}$.

Theorem (Gaar, Krenn, Margulies, W. 2019)

The points in the variety $\mathcal{V}(I_{viz})$ are in bijection to the triples (G, H, D) where

- G is a graph on n_G vertices with $\gamma(G) = k_G$,

where $\gamma(G)$ denotes the domination number of the graph G.

\square
Ideal I_{viz}

Definition

- Let $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$.
- Let I_{viz} be the ideal generated by the generators of I_G, I_H and $I_G \Box H$.

Theorem (Gaar, Krenn, Margulies, W. 2019)

The points in the variety $\mathcal{V}(I_{\text{viz}})$ are in bijection to the triples (G, H, D) where

- G is a graph on n_G vertices with $\gamma(G) = k_G$,
- H is a graph on n_H vertices with $\gamma(H) = k_H$.

Ideal I_{viz}

Definition

- Let $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$.
- Let I_{viz} be the ideal generated by the generators of I_G, I_H and $I_{G \Box H}$.

Theorem (Gaar, Krenn, Margulies, W. 2019)

The points in the variety $\mathcal{V}(I_{\text{viz}})$ are in bijection to the triples (G, H, D) where

- G is a graph on n_G vertices with $\gamma(G) = k_G$,
- H is a graph on n_H vertices with $\gamma(H) = k_H$,
- D is a dominating set of any size in $G \Box H$.

Back to Vizing’s Conjecture

Definition

Given the graph classes \mathcal{G} and \mathcal{H}, define

$$f^* = \left(\sum_{gh \in V(\mathcal{G}) \times V(\mathcal{H})} x_{gh} \right) - k_G k_H.$$
Definition

Given the graph classes G and H, define

$$f^* = \left(\sum_{gh \in V(G) \times V(H)} x_{gh} \right) - k_G k_H.$$

Theorem (Gaar, Krenn, Margulies, W. 2019)

Vizing’s conjecture is true if and only if

- for all values of $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$

 $$f^*(z) \geq 0 \quad \forall z \in \mathcal{V}(l_{viz}).$$
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
\[\gamma(G) \gamma(H) \leq \gamma(G \Box H) \]

2 - Split
\[n_G, k_G, n_H, k_H \]

3 - Algebraic Model

4 - Sum of Squares

5 - Semidefinite Programming

6 - SDP Solver

7 - Guess

8 - SAGE

9 - Prove

10 - Generalize
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Graph Theory</td>
</tr>
<tr>
<td></td>
<td>$\gamma(G)\gamma(H) \leq \gamma(G \Box H)$</td>
</tr>
<tr>
<td>2</td>
<td>Split</td>
</tr>
<tr>
<td></td>
<td>n_G, k_G, n_H, k_H</td>
</tr>
<tr>
<td>3</td>
<td>Algebraic Model</td>
</tr>
<tr>
<td></td>
<td>$f^*(z) \geq 0 \ \forall z \in \mathcal{V}(Viz)$</td>
</tr>
<tr>
<td>4</td>
<td>Sum of Squares</td>
</tr>
<tr>
<td>5</td>
<td>Semidefinite Programming</td>
</tr>
<tr>
<td>6</td>
<td>SDP Solver</td>
</tr>
<tr>
<td>7</td>
<td>Guess</td>
</tr>
<tr>
<td>8</td>
<td>SAGE</td>
</tr>
<tr>
<td>9</td>
<td>Prove</td>
</tr>
<tr>
<td>10</td>
<td>Generalize</td>
</tr>
</tbody>
</table>
General Introduction: Sum of Squares (SOS)

Definition

- Let \(I \) be an ideal of the polynomial ring \(P[x] \).
- Let \(\ell \) be a nonnegative integer.
- A polynomial \(f \in P[x] \) is called \(\ell \)-sum-of-squares modulo \(I \) (or \(\ell \)-sos mod \(I \)), if
 - there exist polynomials \(s_1, \ldots, s_t \in P[x] \) with degrees \(\deg s_i \leq \ell \) for all \(i \in \{1, \ldots, t\} \) and
 \[
 f \equiv \sum_{i=1}^{t} s_i^2 \mod I
 \]
 \[
 \iff f = \sum_{i=1}^{t} s_i^2 + g \text{ for some } g \in I.
 \]
In general:

- nonnegative on the variety \iff being ℓ-sos mod ideal
- nonnegative on the variety $\not\iff$ being ℓ-sos mod ideal
Back to Vizing’s Conjecture

- In general:
 - nonnegative on the variety \iff being ℓ-sos mod ideal
 - nonnegative on the variety $\not\Rightarrow$ being ℓ-sos mod ideal

- However, our specific setting:

Theorem (Gaar, Krenn, Margulies, W. 2019)

Vizing’s conjecture is true if and only if

- for all values of $n_G, k_G, n_H, k_H \in \mathbb{N}$ with $k_G \leq n_G$ and $k_H \leq n_H$
- $\exists \ell \in \mathbb{Z}$ such that f^* is ℓ-sos mod l_{viz}.

- If $f^* \equiv \sum_{i=1}^{t} s_i^2 \mod l_{viz}$, we call the s_i a certificate
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
\[\gamma(G)\gamma(H) \leq \gamma(G \square H) \]

2 - Split
\[n_G, k_G, n_H, k_H \]

3 - Algebraic Model
\[f^*(z) \geq 0 \ \forall z \in \mathcal{V}(I_{viz}) \]

4 - Sum of Squares

5 - Semidefinite Programming

6 - SDP Solver

7 - Guess

8 - SAGE

9 - Prove

10 - Generalize
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
\[\gamma(G) \gamma(H) \leq \gamma(G \Box H) \]

2 - Split
\[n_G, k_G, n_H, k_H \]

3 - Algebraic Model
\[f^*(z) \geq 0 \quad \forall z \in \mathcal{V}(l_{viz}) \]

4 - Sum of Squares
\[f^* \equiv \sum_{i=1}^{t} s_i^2 \mod l_{viz} \]

5 - Semidefinite Programming

6 - SDP Solver

7 - Guess

8 - SAGE

9 - Prove

10 - Generalize
Semidefinite Programming

- Standard procedure to check if f^* is ℓ-sos mod I_{viz}:
 - fix a reduced Gröbner basis B of I_{viz}
Semidefinite Programming

- Standard procedure to check if f^* is ℓ-sos mod I_{viz}:
 - fix a reduced Gröbner basis B of I_{viz}
 - let v be the vector of all monomials of degree at most ℓ which cannot be reduced over B

Observation (see e.g. Blekherman, Parrilo, Thomas 2012)

- Then f^* is ℓ-sos modulo I_{viz} if and only if there is a positive semidefinite matrix $X \in \mathbb{R}^{p \times p}$ such that f^* is equal to $v^T X v$ when reduced over B.
Semidefinite Programming

- Standard procedure to check if f^* is ℓ-sos mod I_{viz}:
 - fix a reduced Gröbner basis B of I_{viz}
 - let v be the vector of all monomials of degree at most ℓ which can not be reduced over B
 - let p be the length of the vector v

Observation (see e.g. Blekherman, Parrilo, Thomas 2012)
- Then f^* is ℓ-sos modulo I_{viz} if and only if there is a positive semidefinite matrix $X \in \mathbb{R}^{p \times p}$ such that f^* is equal to $v^T X v$ when reduced over B.
Semidefinite Programming

- Standard procedure to check if \(f^* \) is \(\ell \)-sos mod \(l_{\text{viz}} \):
 - fix a reduced Gröbner basis \(B \) of \(l_{\text{viz}} \)
 - let \(v \) be the vector of all monomials of degree at most \(\ell \) which can not be reduced over \(B \)
 - let \(p \) be the length of the vector \(v \)

Observation (see e.g. Blekherman, Parrilo, Thomas 2012)

- \(f^* \) is \(\ell \)-sos modulo \(l_{\text{viz}} \) if and only if
 - there is a positive semidefinite matrix \(X \in \mathbb{R}^{p \times p} \) such that
 - \(f^* \) is equal to
 \[v^T X v \]
 when reduced over \(B \).
Semidefinite Programming

- Standard procedure to check if f^* is ℓ-sos mod I_{viz}:
 - fix a reduced Gröbner basis B of I_{viz}
 - let ν be the vector of all monomials of degree at most ℓ which can not be reduced over B
 - let p be the length of the vector ν

Observation (see e.g. Blekherman, Parrilo, Thomas 2012)

- Then f^* is ℓ-sos modulo I_{viz} if and only if
 - there is a positive semidefinite matrix $X \in \mathbb{R}^{p \times p}$ such that
 - f^* is equal to
 \[
 \nu^T X \nu
 \]

 when reduced over B.

- Explanation:
 - $X \succeq 0 \Rightarrow \exists S : X = S^T S$
Semidefinite Programming

- Standard procedure to check if f^* is ℓ-sos mod I_{viz}:
 - fix a reduced Gröbner basis B of I_{viz}
 - let v be the vector of all monomials of degree at most ℓ which can not be reduced over B
 - let p be the length of the vector v

Observation (see e.g. Blekherman, Parrilo, Thomas 2012)

- Then f^* is ℓ-sos modulo I_{viz} if and only if
 - there is a positive semidefinite matrix $X \in \mathbb{R}^{p \times p}$ such that
 - f^* is equal to
 $$v^T X v$$
 when reduced over B.

Explanation:

- $X \succeq 0 \Rightarrow \exists S : X = S^T S$
- hence: $f^* \equiv v^T X v = (Sv)^T (Sv) = \sum_i s_i^2 \mod I_{\text{viz}}$
Semidefinite Programming

- Standard procedure to check if f^* is ℓ-sos mod I_{viz}:
 - fix a reduced Gröbner basis B of I_{viz}
 - let v be the vector of all monomials of degree at most ℓ which can not be reduced over B
 - let p be the length of the vector v

Observation (see e.g. Blekherman, Parrilo, Thomas 2012)

- Then f^* is ℓ-sos modulo I_{viz} if and only if
 - there is a positive semidefinite matrix $X \in \mathbb{R}^{p \times p}$ such that
 - f^* is equal to
 \[v^T X v \]
 when reduced over B.

- Semidefinite Program to check if f^* is ℓ-sos mod I_{viz}:
Semidefinite Programming

- Standard procedure to check if \(f^* \) is \(\ell \)-sos mod \(I_{\text{viz}} \):
 - fix a reduced Gröbner basis \(B \) of \(I_{\text{viz}} \)
 - let \(v \) be the vector of all monomials of degree at most \(\ell \) which can not be reduced over \(B \)
 - let \(p \) be the length of the vector \(v \)

Observation (see e.g. Blekherman, Parrilo, Thomas 2012)

- Then \(f^* \) is \(\ell \)-sos modulo \(I_{\text{viz}} \) if and only if
 - there is a positive semidefinite matrix \(X \in \mathbb{R}^{p \times p} \) such that
 - \(f^* \) is equal to
 \[
 v^T X v
 \]
 when reduced over \(B \).

- Semidefinite Program to check if \(f^* \) is \(\ell \)-sos mod \(I_{\text{viz}} \):
 - matrix variable \(X \in \mathbb{R}^{p \times p}, X \succeq 0 \)
 - linear constraints that guarantee \(f^* \equiv v^T X v \mod I_{\text{viz}} \)
Semidefinite Programming

- Standard procedure to check if f^* is ℓ-sos mod I_{viz}:
 - fix a reduced Gröbner basis B of I_{viz}
 - let v be the vector of all monomials of degree at most ℓ which can not be reduced over B
 - let p be the length of the vector v

Observation (see e.g. Blekherman, Parrilo, Thomas 2012)

- Then f^* is ℓ-sos modulo I_{viz} if and only if
 - there is a positive semidefinite matrix $X \in \mathbb{R}^{p \times p}$ such that
 - f^* is equal to
 \[v^T X v \]
 when reduced over B.

- Semidefinite Program to check if f^* is ℓ-sos mod I_{viz}:
 - matrix variable $X \in \mathbb{R}^{p \times p}$, $X \succeq 0$
 - linear constraints that guarantee $f^* \equiv v^T X v \mod I_{\text{viz}}$
 - objective function can be chosen arbitrarily
Tackling Vizing’s Conjecture — Road Map

<table>
<thead>
<tr>
<th>1 - Graph Theory</th>
<th>2 - Split</th>
<th>3 - Algebraic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma(G)\gamma(H) \leq \gamma(G\Box H)$</td>
<td>n_G, k_G, n_H, k_H</td>
<td>$f^*(z) \geq 0 \ \forall z \in \mathcal{V}(l_{viz})$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 - Sum of Squares</th>
<th>5 - Semidefinite Programming</th>
<th>6 - SDP Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f^* \equiv \sum_{i=1}^{t} s_i^2 \mod l_{viz}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 - Guess</th>
<th>8 - SAGE</th>
<th>9 - Prove</th>
<th>10 - Generalize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tackling Vizing’s Conjecture — Road Map

<table>
<thead>
<tr>
<th>1 - Graph Theory</th>
<th>2 - Split</th>
<th>3 - Algebraic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma(G) \gamma(H) \leq \gamma(G \Box H)$</td>
<td>n_G, k_G, n_H, k_H</td>
<td>$f^*(z) \geq 0 \ \forall z \in \mathcal{V}(l_{viz})$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 - Sum of Squares</th>
<th>5 - Semidefinite Programming</th>
<th>6 - SDP Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f^* \equiv \sum_{i=1}^{t} s_i^2 \mod l_{viz}$</td>
<td>$\exists X: X \succeq 0, \quad f^* \equiv v^T X v \mod l_{viz}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 - Guess</th>
<th>8 - SAGE</th>
<th>9 - Prove</th>
<th>10 - Generalize</th>
</tr>
</thead>
</table>
Using an SDP Solver

- Semidefinite Program to check if f^* is ℓ-sos mod I_{viz}:
 - matrix variable $X \in \mathbb{R}^{p \times p}$, $X \succeq 0$
 - linear constraints that guarantee $f^* \equiv v^T X v \mod I_{\text{viz}}$
 - objective function can be chosen arbitrarily
Using an SDP Solver

- Semidefinite Program to check if f^* is ℓ-sos mod I_{viz}:
 - matrix variable $X \in \mathbb{R}^{p \times p}$, $X \succeq 0$
 - linear constraints that guarantee $f^* \equiv v^T X v \mod I_{\text{viz}}$
 - objective function can be chosen arbitrarily

- Use an SDP Solver (e.g. MOSEK)
Using an SDP Solver

- Semidefinite Program to check if f^* is ℓ-sos mod I_{viz}:
 - matrix variable $X \in \mathbb{R}^{p \times p}$, $X \succeq 0$
 - linear constraints that guarantee $f^* \equiv v^T X v \mod I_{\text{viz}}$
 - objective function can be chosen arbitrarily

- Use an SDP Solver (e.g. MOSEK)
- If SDP infeasible:
Using an SDP Solver

Semidefinite Program to check if f^* is ℓ-sos mod I_{viz}:

- matrix variable $X \in \mathbb{R}^{p \times p}, X \succeq 0$
- linear constraints that guarantee $f^* \equiv v^T X v \mod I_{\text{viz}}$
- objective function can be chosen arbitrarily

Use an SDP Solver (e.g. MOSEK)

If SDP infeasible:

- f^* is most likely not ℓ-sos mod I_{viz}

 \Rightarrow increase ℓ
Using an SDP Solver

- Semidefinite Program to check if f^* is ℓ-sos mod I_{viz}:
 - matrix variable $X \in \mathbb{R}^{p \times p}$, $X \succeq 0$
 - linear constraints that guarantee $f^* \equiv v^T X v \mod I_{\text{viz}}$
 - objective function can be chosen arbitrarily

- Use an SDP Solver (e.g. MOSEK)
- If SDP infeasible:
 - f^* is most likely not ℓ-sos mod I_{viz}
 - increase ℓ
- If optimal solution found:
Using an SDP Solver

- Semidefinite Program to check if f^* is ℓ-sos mod I_{viz}:
 - matrix variable $X \in \mathbb{R}^{p \times p}$, $X \succeq 0$
 - linear constraints that guarantee $f^* \equiv v^T X v \mod I_{\text{viz}}$
 - objective function can be chosen arbitrarily

- Use an SDP Solver (e.g. MOSEK)
- If SDP infeasible:
 - f^* is most likely not ℓ-sos mod I_{viz}
 - \leftarrow increase ℓ
- If optimal solution found:
 - f^* is most likely ℓ-sos mod I_{viz}
 - in a perfect (exact) world:
 - numeric SDP solution for X is exact
 - calculate eigenvalues decomposition $X = V^T D V$
 - set $S_i,j = D_i^1/2 V_i$
 - S_i,j is the coefficient of the j-th monomial in the i-th polynomial s_i of the exact sum-of-squares certificate
 - $f^* \sum s_i^2 \mod I_{\text{viz}}$
Using an SDP Solver

- Semidefinite Program to check if f^* is ℓ-sos mod I_{viz}:
 - matrix variable $X \in \mathbb{R}^{p \times p}$, $X \succeq 0$
 - linear constraints that guarantee $f^* \equiv v^T X v \mod I_{\text{viz}}$
 - objective function can be chosen arbitrarily

- Use an SDP Solver (e.g. MOSEK)
- If SDP infeasible:
 - f^* is most likely not ℓ-sos mod I_{viz}
 - increase ℓ
- If optimal solution found:
 - f^* is most likely ℓ-sos mod I_{viz}
 - in a perfect (exact) world:
 - numeric SDP solution for X is exact
Using an SDP Solver

- Semidefinite Program to check if f^* is ℓ-sos mod I_{viz}:
 - matrix variable $X \in \mathbb{R}^{p \times p}$, $X \succeq 0$
 - linear constraints that guarantee $f^* \equiv v^T X v \mod I_{viz}$
 - objective function can be chosen arbitrarily

- Use an SDP Solver (e.g. MOSEK)
- If SDP infeasible:
 - f^* is most likely not ℓ-sos mod I_{viz}
 - \leftarrow increase ℓ
- If optimal solution found:
 - f^* is most likely ℓ-sos mod I_{viz}
 - in a perfect (exact) world:
 - numeric SDP solution for X is exact
 - calculate eigenvalues decomposition $X = V^T D V$ exactly
 - set $S = D^{1/2} V$
 - $S_{i,j}$ is the coefficient of the j-th monomial in the i-th polynomial s_i of the exact sum-of-squares certificate
Using an SDP Solver

- Semidefinite Program to check if f^* is ℓ-sos mod l_{viz}:
 - matrix variable $X \in \mathbb{R}^{p \times p}$, $X \succeq 0$
 - linear constraints that guarantee $f^* \equiv v^T X v \pmod{l_{\text{viz}}}$
 - objective function can be chosen arbitrarily

- Use an SDP Solver (e.g. MOSEK)
- If SDP infeasible:
 - f^* is most likely not ℓ-sos mod l_{viz}
 - increase ℓ
- If optimal solution found:
 - f^* is most likely ℓ-sos mod l_{viz}
 - in a perfect (exact) world:
 - numeric SDP solution for X is exact
 - calculate eigenvalues decomposition $X = V^T D V$ exactly
 - set $S = D^{1/2} V$
 - $S_{i,j}$ is the coefficient of the j-th monomial in the i-th polynomial s_i of the exact sum-of-squares certificate
 - $f^* \equiv \sum_i s_i^2 \pmod{l_{\text{viz}}}$
Using an SDP Solver

- Semidefinite Program to check if \(f^* \) is \(\ell \)-sos mod \(I_{\text{viz}} \):
 - matrix variable \(X \in \mathbb{R}^{p \times p}, X \succeq 0 \)
 - linear constraints that guarantee \(f^* \equiv v^T X v \mod I_{\text{viz}} \)
 - objective function can be chosen arbitrarily

- Use an SDP Solver (e.g. MOSEK)
- If SDP infeasible:
 - \(f^* \) is most likely not \(\ell \)-sos mod \(I_{\text{viz}} \)
 - \(\rightarrow \) increase \(\ell \)
- If optimal solution found:
 - \(f^* \) is most likely \(\ell \)-sos mod \(I_{\text{viz}} \)
 - in a not perfect (exact) world:
 - numeric SDP solution for \(X \) is not exact
 - calculate eigenvalues decomposition \(X = V^T D V \) not exactly
 - set \(S = D^{1/2} V \)
 - \(S_{i,j} \) is the coefficient of the \(j \)-th monomial in the \(i \)-th polynomial \(s_i \) of the not exact sum-of-squares certificate
 - \(f^* \approx \sum_i s_i^2 \mod I_{\text{viz}} \)
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
\[\gamma(G) \gamma(H) \leq \gamma(G \Box H) \]

2 - Split
\[n_G, k_G, n_H, k_H \]

3 - Algebraic Model
\[f^*(z) \geq 0 \ \forall z \in \mathcal{V}(I_{viz}) \]

4 - Sum of Squares
\[f^* \equiv \sum_{i=1}^{t} s_i^2 \mod I_{viz} \]

5 - Semidefinite Programming
\[\exists X : X \succeq 0, \quad f^* \equiv v^T X v \mod I_{viz} \]

6 - SDP Solver

7 - Guess

8 - SAGE

9 - Prove

10 - Generalize
Tackling Vizing’s Conjecture — Road Map

<table>
<thead>
<tr>
<th>1 - Graph Theory</th>
<th>2 - Split</th>
<th>3 - Algebraic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma(G)\gamma(H) \leq \gamma(G \square H)$</td>
<td>n_g, k_g, n_H, k_H</td>
<td>$f^*(z) \geq 0 \ \forall z \in \mathcal{V}(l_{viz})$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 - Sum of Squares</th>
<th>5 - Semidefinite Programming</th>
<th>6 - SDP Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f^* \equiv \sum_{i=1}^{t} s_i^2 \mod l_{viz}$</td>
<td>$\exists X : X \succeq 0, \ f^* \equiv v^T X v \mod l_{viz}$</td>
<td>numeric certificate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 - Guess</th>
<th>8 - SAGE</th>
<th>9 - Prove</th>
<th>10 - Generalize</th>
</tr>
</thead>
</table>
Example

\[n_G = 3, \ k_G = 2, \ n_H = 3, \ k_H = 2 \]
Example

- $n_G = 3$, $k_G = 2$, $n_H = 3$, $k_H = 2$
- Construct the ideal I_{viz}
 - 15 variables ($3 e_G$, $3 e_H$, $9 x_{G \square H}$)
 - generated by 32 polynomials ($7 I_G$, $7 I_H$, $18 I_{G \square H}$)
 - reduced Gröbner basis of size 95
Example

- $n_G = 3$, $k_G = 2$, $n_H = 3$, $k_H = 2$
- Construct the ideal I_{viz}
 - 15 variables ($3 e_G$, $3 e_H$, $9 x_{G \Box H}$)
 - generated by 32 polynomials ($7 I_G$, $7 I_H$, $18 I_{G \Box H}$)
 - reduced Gröbner basis of size 95
- Is f^* 1-sos mod I_{viz}?
 - $X \in \mathbb{R}^{12 \times 12}$
 - 67 linear equality constraints
Example

- $n_G = 3$, $k_G = 2$, $n_H = 3$, $k_H = 2$
- Construct the ideal I_{viz}
 - 15 variables ($3 e_G$, $3 e_H$, $9 x_{G \square H}$)
 - generated by 32 polynomials ($7 I_G$, $7 I_H$, $18 I_{G \square H}$)
 - reduced Gröbner basis of size 95
- Is f^* 1-sos mod I_{viz}?
 - $X \in \mathbb{R}^{12 \times 12}$
 - 67 linear equality constraints
 - infeasible
Example

- $n_G = 3$, $k_G = 2$, $n_H = 3$, $k_H = 2$
- Construct the ideal I_{viz}
 - 15 variables ($3 e_G$, $3 e_H$, $9 x_{G \Box H}$)
 - generated by 32 polynomials ($7 I_G$, $7 I_H$, $18 I_{G \Box H}$)
 - reduced Gröbner basis of size 95
- Is f^* 1-sos mod I_{viz}?
 - $X \in \mathbb{R}^{12 \times 12}$
 - 67 linear equality constraints
 - infeasible
- Is f^* 2-sos mod I_{viz}?
 - $X \in \mathbb{R}^{67 \times 67}$
 - 359 linear equality constraints
Example

- \(n_G = 3, \ k_G = 2, \ n_H = 3, \ k_H = 2 \)
- Construct the ideal \(I_{\text{viz}} \)
 - 15 variables (3 \(e_G \), 3 \(e_H \), 9 \(x_{G\boxtimes H} \))
 - generated by 32 polynomials (7 \(I_G \), 7 \(I_H \), 18 \(I_{G\boxtimes H} \))
 - reduced Gröbner basis of size 95
- Is \(f^* \) 1-sos mod \(I_{\text{viz}} \)?
 - \(X \in \mathbb{R}^{12 \times 12} \)
 - 67 linear equality constraints
 - infeasible
- Is \(f^* \) 2-sos mod \(I_{\text{viz}} \)?
 - \(X \in \mathbb{R}^{67 \times 67} \)
 - 359 linear equality constraints
 - SDP solution time: 0.72 seconds
 - optimal solution found 😊
 - start to guess the exact certificate!
Example: $n_G = 3, k_G = 2, n_H = 3, k_H = 2, X \in \mathbb{R}^{67 \times 67}$

- Plot of the entries of matrix $S = D^{1/2}V$
- $S_{i,j}$ is the coefficient of the j-th monomial in the i-th polynomial s_i of the numeric sum-of-squares certificate
Example: \(n_G = 3, \ k_G = 2, \ n_H = 3, \ k_H = 2, \ X \in \mathbb{R}^{67 \times 67} \)

- Plot of the entries of matrix \(S = D^{1/2} V \)
- \(S_{i,j} \) is the coefficient of the \(j \)-th monomial in the \(i \)-th polynomial \(s_i \) of the numeric sum-of-squares certificate
Example: \(n_G = 3, \ k_G = 2, \ n_H = 3, \ k_H = 2 \)

- Strategy:
 - play with objective function

This leads to a nice certificate:

4 (number of rows) polynomials

\(s_1, \ldots, s_4 \)

in 19 (number of columns) monomials

nice block structure
Example: $n_G = 3$, $k_G = 2$, $n_H = 3$, $k_H = 2$

Strategy:

- play with objective function
- restrict to a subset of monomials

 use only the 19 monomials of the form

 1, x_{gh} and $x_{gh}x_{gh'}$ for all $g \in V(G)$ and all $h, h' \neq h \in V(H)$

This leads to a nice certificate:

4 (number of rows) polynomials s_1, \ldots, s_4

in 19 (number of columns) monomials

nice block structure
Example: \(n_G = 3, \ k_G = 2, \ n_H = 3, \ k_H = 2 \)

Strategy:

- play with objective function
- restrict to a subset of monomials
 - use only the 19 monomials of the form \(1, x_{gh} \) and \(x_{gh}x_{gh'} \) for all \(g \in V(G) \) and all \(h, h' \neq h \in V(H) \)

This \(S \) leads to a nice certificate:

- 4 (number of rows) polynomials \(s_1, \ldots, s_4 \)
- in 19 (number of columns) monomials
- nice block structure
For $n_G = 3$, $k_G = 2$, $n_H = 3$ and $k_H = 2$

Vizing’s conjecture is true as the polynomials

\[s_i = \nu_i + \sum_{g \in V(G)} \lambda_{g,i} \left(\sum_{h \in V(H)} x_{gh} \right) + \sum_{g \in V(G)} \mu_{g,i} \left(\sum_{\{h,h'\} \subseteq V(H)} x_{gh} x_{gh'} \right) \]

for $i \in \{1, \ldots, n_G\}$ and

\[s_0 = \alpha + \beta \left(\sum_{g \in V(G)} \sum_{h \in V(H)} x_{gh} \right) + \gamma \left(\sum_{g \in V(G)} \sum_{\{h,h'\} \subseteq V(H)} x_{gh} x_{gh'} \right), \]

where α, β, γ, ν_i, $\lambda_{g,i}$ and $\mu_{g,i}$ are the entries of S, are a 2-sos certificate of f^*.
Example: $n_G = 3$, $k_G = 2$, $n_H = 3$, $k_H = 2$

$$S = \begin{pmatrix} 0.535 & 0.011 & 0.011 & 0.011 & -0.289 & -0.289 & -0.289 \\ 0.000 & 0.000 & 0.236 & -0.236 & -0.001 & -0.471 & 0.472 \\ -0.000 & -0.272 & 0.136 & 0.136 & 0.544 & -0.273 & -0.272 \\ 2.778 & -0.962 & -0.962 & -0.962 & 0.536 & 0.536 & 0.536 \end{pmatrix}$$

- Entries of S are hard to guess! 😞
Example: $n_G = 3$, $k_G = 2$, $n_H = 3$, $k_H = 2$

$X = \begin{pmatrix}
-2.667 & 1.000 & 0.889 & 0.889 & -0.667 & -0.444 & -0.444 \\
-2.667 & 0.889 & 1.000 & 0.889 & -0.444 & -0.667 & -0.444 \\
-2.667 & 0.889 & 0.889 & 1.000 & -0.444 & -0.444 & -0.667 \\
1.333 & -0.667 & -0.444 & -0.445 & 0.667 & 0.222 & 0.222 \\
1.333 & -0.444 & -0.667 & -0.445 & 0.222 & 0.667 & 0.222 \\
1.333 & -0.444 & -0.444 & -0.667 & 0.222 & 0.222 & 0.667 \\
\end{pmatrix}$

- Entries of X are easy to guess! 😊
- e.g. $0.667 = 2/3$
- Obtain guessed exact values for X
Example: $n_G = 3, k_G = 2, n_H = 3, k_H = 2$

- Have guessed exact values for X
- Use $S^T S = X$
Example: $n_G = 3, k_G = 2, n_H = 3, k_H = 2$

- Have guessed exact values for X
- Use $S^T S = X$
- Group coefficients of S
 \[
 \nu = (\nu_i)_{i=1, \ldots, n_G} \quad \mu_g = (\mu_{g,i})_{i=1, \ldots, n_G} \quad \lambda_g = (\lambda_{g,i})_{i=1, \ldots, n_G}
 \]
 \[
 a = \begin{pmatrix} \nu \\ \alpha \end{pmatrix} \quad b_g = \begin{pmatrix} \lambda_g \\ \beta \end{pmatrix} \quad c_g = \begin{pmatrix} \mu_g \\ \gamma \end{pmatrix}
 \]
- Obtain a system of equations
 \[
 \langle a, a \rangle = 2(n_G - 1)^2 \quad \langle b_g, b_g \rangle = 1 \quad \langle b_g, b_g' \rangle = \frac{8}{3}
 \]
 \[
 \langle a, b_g \rangle = -\frac{4}{3}(n_G - 1) \quad \langle c_g, c_g \rangle = \frac{6}{9} \quad \langle c_g, c_g' \rangle = \frac{2}{9}
 \]
 \[
 \langle a, c_g \rangle = \frac{2}{3}(n_G - 1) \quad \langle b_g, c_g \rangle = -\frac{6}{9} \quad \langle b_g, c_g' \rangle = -\frac{4}{9}
 \]
- If the guess for X was correct:
 - each solution to the system of equations yields a certificate!
 - found an easy solution with $\nu = 0$
 - can be used to further simplify the certificate
Example: $n_G = 3$, $k_G = 2$, $n_H = 3$, $k_H = 2$

Conjecture

- For $n_G = 3$, $k_G = 2$, $n_H = 3$ and $k_H = 2$

 Vizing’s conjecture is true as the polynomials

\[
s_g = \frac{1}{3} \left(\sum_{h \in V(H)} x_{gh} - 2 \sum_{\{h, h'\} \subseteq V(H)} x_{gh} x_{gh'} \right) \quad \text{for } g \in V(G)
\]

\[
s_0 = \alpha + \beta \left(\sum_{g \in V(G)} \sum_{h \in V(H)} x_{gh} \right) + \gamma \left(\sum_{g \in V(G)} \sum_{\{h, h'\} \subseteq V(H)} x_{gh} x_{gh'} \right)
\]

where $\alpha = \sqrt{2}(n_G - 1)$, $\beta = -\frac{2}{3} \sqrt{2}$ and $\gamma = \frac{1}{3} \sqrt{2}$

are a 2-sos certificate of f^*.
Tackling Vizing’s Conjecture — Road Map

<table>
<thead>
<tr>
<th>1 - Graph Theory</th>
<th>2 - Split</th>
<th>3 - Algebraic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma(G)\gamma(H) \leq \gamma(G\Box H))</td>
<td>(n_G, k_G, n_H, k_H)</td>
<td>(f^*(z) \geq 0 \ \forall z \in \mathcal{V}(l_{viz}))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 - Sum of Squares</th>
<th>5 - Semidefinite Programming</th>
<th>6 - SDP Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f^* \equiv \sum_{i=1}^{t} s_i^2 \mod l_{viz})</td>
<td>(\exists X : X \succeq 0, \ f^* \equiv v^T X v \mod l_{viz})</td>
<td>numeric certificate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 - Guess</th>
<th>8 - SAGE</th>
<th>9 - Prove</th>
<th>10 - Generalize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Graph Theory**
 \(\gamma(G)\gamma(H) \leq \gamma(G\Box H)\)

2. **Split**
 \(n_G, k_G, n_H, k_H\)

3. **Algebraic Model**
 \(f^*(z) \geq 0 \ \forall z \in \mathcal{V}(l_{viz})\)

4. **Sum of Squares**
 \(f^* \equiv \sum_{i=1}^{t} s_i^2 \mod l_{viz}\)

5. **Semidefinite Programming**
 \(\exists X : X \succeq 0, \ f^* \equiv v^T X v \mod l_{viz}\)

6. **SDP Solver**
 numeric certificate

7. **Guess**

8. **SAGE**

9. **Prove**

10. **Generalize**
<table>
<thead>
<tr>
<th>1 - Graph Theory</th>
<th>2 - Split</th>
<th>3 - Algebraic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma(G)\gamma(H) \leq \gamma(G\Box H)$</td>
<td>n_G, k_G, n_H, k_H</td>
<td>$f^*(z) \geq 0 \ \forall z \in \mathcal{V}(l_{viz})$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 - Sum of Squares</th>
<th>5 - Semidefinite Programming</th>
<th>6 - SDP Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f^* \equiv \sum_{i=1}^{t} s_i^2 \mod l_{viz}$</td>
<td>$\exists X : X \succeq 0, \ f^* \equiv v^T X v \mod l_{viz}$</td>
<td>numeric certificate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 - Guess</th>
<th>8 - SAGE</th>
<th>9 - Prove</th>
<th>10 - Generalize</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact certificate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: $n_G = 3$, $k_G = 2$, $n_H = 3$, $k_H = 2$

Theorem (Gaar, Krenn, Margulies, W. 2019)

For $n_G = 3$, $k_G = 2$, $n_H = 3$ and $k_H = 2$

Vizing’s conjecture is true as the polynomials

\[
 s_g = \frac{1}{3} \left(\sum_{h \in V(H)} x_{gh} - 2 \sum_{\{h, h'\} \subseteq V(H)} x_{gh} x_{gh'} \right) \text{ for } g \in V(G)
\]

\[
 s_0 = \alpha + \beta \left(\sum_{g \in V(G)} \sum_{h \in V(H)} x_{gh} \right) + \gamma \left(\sum_{g \in V(G)} \sum_{\{h, h'\} \subseteq V(H)} x_{gh} x_{gh'} \right)
\]

where $\alpha = \sqrt{2}(n_G - 1)$, $\beta = -\frac{2}{3} \sqrt{2}$ and $\gamma = \frac{1}{3} \sqrt{2}$

are a 2-sos certificate of f^\ast.
Tackling Vizing’s Conjecture — Road Map

<table>
<thead>
<tr>
<th>1 - Graph Theory</th>
<th>2 - Split</th>
<th>3 - Algebraic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma(G) \gamma(H) \leq \gamma(G \square H)$</td>
<td>n_G, k_G, n_H, k_H</td>
<td>$f^*(z) \geq 0 \ \forall z \in \mathcal{V}(I_{viz})$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 - Sum of Squares</th>
<th>5 - Semidefinite Programming</th>
<th>6 - SDP Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f^* \equiv \sum_{i=1}^{t} s_i^2 \mod I_{viz}$</td>
<td>$\exists X : X \succeq 0$, $f^* \equiv v^T X v \mod I_{viz}$</td>
<td>numeric certificate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 - Guess</th>
<th>8 - SAGE</th>
<th>9 - Prove</th>
<th>10 - Generalize</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact certificate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tackling Vizing’s Conjecture — Road Map

1 - Graph Theory
\[\gamma(G) \gamma(H) \leq \gamma(G \square H) \]

2 - Split
\[n_g, k_g, n_H, k_H \]

3 - Algebraic Model
\[f^*(z) \geq 0 \ \forall z \in \mathcal{V}(l_{viz}) \]

4 - Sum of Squares
\[f^* \equiv \sum_{i=1}^{t} s_i^2 \ \text{mod } l_{viz} \]

5 - Semidefinite Programming
\[\exists X : X \succeq 0, \quad f^* \equiv v^T X v \ \text{mod } l_{viz} \]

6 - SDP Solver
numeric certificate

7 - Guess
exact certificate

8 - SAGE
verify certificate

9 - Prove

10 - Generalize
<table>
<thead>
<tr>
<th></th>
<th>Tackling Vizing’s Conjecture — Road Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 - Graph Theory</td>
</tr>
<tr>
<td></td>
<td>$\gamma(G)\gamma(H) \leq \gamma(G\Box H)$</td>
</tr>
<tr>
<td>2</td>
<td>2 - Split</td>
</tr>
<tr>
<td></td>
<td>n_g, k_g, n_H, k_H</td>
</tr>
<tr>
<td>3</td>
<td>3 - Algebraic Model</td>
</tr>
<tr>
<td></td>
<td>$f^*(z) \geq 0 \ \forall z \in \mathcal{V}(l_{viz})$</td>
</tr>
<tr>
<td>4</td>
<td>4 - Sum of Squares</td>
</tr>
<tr>
<td></td>
<td>$f^* \equiv \sum_{i=1}^{t} s_i^2 \mod l_{viz}$</td>
</tr>
<tr>
<td>5</td>
<td>5 - Semidefinite Programming</td>
</tr>
<tr>
<td></td>
<td>$\exists X : X \succeq 0, f^* \equiv v^T X v \mod l_{viz}$</td>
</tr>
<tr>
<td>6</td>
<td>6 - SDP Solver</td>
</tr>
<tr>
<td></td>
<td>numeric certificate</td>
</tr>
<tr>
<td>7</td>
<td>7 - Guess</td>
</tr>
<tr>
<td></td>
<td>exact certificate</td>
</tr>
<tr>
<td>8</td>
<td>8 - SAGE</td>
</tr>
<tr>
<td></td>
<td>verify certificate</td>
</tr>
<tr>
<td>9</td>
<td>9 - Prove</td>
</tr>
<tr>
<td>10</td>
<td>10 - Generalize</td>
</tr>
</tbody>
</table>
Tackling Vizing’s Conjecture — Road Map

<table>
<thead>
<tr>
<th>1 - Graph Theory</th>
<th>2 - Split</th>
<th>3 - Algebraic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma(G) \gamma(H) \leq \gamma(G \square H))</td>
<td>(n_G, k_G, n_H, k_H)</td>
<td>(f^*(z) \geq 0 \ \forall z \in \mathcal{V}(I_{viz}))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 - Sum of Squares</th>
<th>5 - Semidefinite Programming</th>
<th>6 - SDP Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f^* \equiv \sum_{i=1}^{t} s_i^2 \mod I_{viz})</td>
<td>(\exists X : X \succeq 0, \ f^* \equiv v^T X v \mod I_{viz})</td>
<td>numeric certificate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 - Guess</th>
<th>8 - SAGE</th>
<th>9 - Prove</th>
<th>10 - Generalize</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact certificate</td>
<td>verify certificate</td>
<td>prove certificate</td>
<td></td>
</tr>
</tbody>
</table>
Example: \(n_G = 3, k_G = 2, n_H = 3, k_H = 2 \)

Theorem (Gaar, Krenn, Margulies, W. 2019)

- For \(k_G = n_G - 1, n_H = 3 \) and \(k_H = 2 \)

Vizing’s conjecture is true as the polynomials

\[
sg = \frac{1}{3} \left(\sum_{h \in V(H)} x_{gh} - 2 \sum_{\{h, h'\} \subseteq V(H)} x_{gh}x_{gh'} \right) \quad \text{for } g \in V(G)
\]

\[
s_0 = \alpha + \beta \left(\sum_{g \in V(G)} \sum_{h \in V(H)} x_{gh} \right) + \gamma \left(\sum_{g \in V(G)} \sum_{\{h, h'\} \subseteq V(H)} x_{gh}x_{gh'} \right)
\]

where \(\alpha = \sqrt{2}(n_G - 1), \beta = -\frac{2}{3}\sqrt{2} \) and \(\gamma = \frac{1}{3}\sqrt{2} \)

are a 2-sos certificate of \(f^* \).
<table>
<thead>
<tr>
<th>1 - Graph Theory</th>
<th>2 - Split</th>
<th>3 - Algebraic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma(G) \gamma(H) \leq \gamma(G \Box H)$</td>
<td>n_G, k_G, n_H, k_H</td>
<td>$f^*(z) \geq 0 \ \forall z \in \mathcal{V}(l_{viz})$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 - Sum of Squares</th>
<th>5 - Semidefinite Programming</th>
<th>6 - SDP Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f^* \equiv \sum_{i=1}^{t} s_i^2 \mod l_{viz}$</td>
<td>$\exists X : X \succeq 0, \ f^* \equiv \nu^T X \nu \mod l_{viz}$</td>
<td>numeric certificate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 - Guess</th>
<th>8 - SAGE</th>
<th>9 - Prove</th>
<th>10 - Generalize</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact certificate</td>
<td>verify certificate</td>
<td>prove certificate</td>
<td></td>
</tr>
</tbody>
</table>
Tackling Vizing’s Conjecture — Road Map

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Graph Theory</td>
<td>2 - Split</td>
<td>3 - Algebraic Model</td>
</tr>
<tr>
<td>$\gamma(G)\gamma(H) \leq \gamma(G\Box H)$</td>
<td>n_g, k_g, n_H, k_H</td>
<td>$f^*(z) \geq 0 \ \forall z \in \mathcal{V}(I_{viz})$</td>
</tr>
<tr>
<td>4 - Sum of Squares</td>
<td>5 - Semidefinite Programming</td>
<td>6 - SDP Solver</td>
</tr>
<tr>
<td>$f^* \equiv \sum_{i=1}^{t} s_i^2 \mod I_{viz}$</td>
<td>$\exists X : X \succeq 0,$, $f^* \equiv \nu^T X \nu \mod I_{viz}$</td>
<td>numeric certificate</td>
</tr>
<tr>
<td>7 - Guess</td>
<td>8 - SAGE</td>
<td>9 - Prove</td>
</tr>
<tr>
<td>exact certificate</td>
<td>verify certificate</td>
<td>prove certificate</td>
</tr>
<tr>
<td>10 - Generalize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>generalize certificate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Further certificates I

Theorem (Gaar, Krenn, Margulies, W. 2019)

- For $k_G = n_G \geq 1$ and $k_H = n_H - 1 \geq 1$

Vizing’s conjecture is true as the polynomials

$$s_g = \left(\sum_{h \in V(H)} x_{gh} \right) - k_H \quad \text{for } g \in V(G)$$

are a 1-sos certificate of f^*.
Further certificates II

Theorem (Gaar, Krenn, Margulies, W. 2019)

- For \(k_G = n_G \geq 1 \) and \(k_H = n_H - 2 \geq 1 \)

 Vizing’s conjecture is true as the polynomials

\[
s_g = \alpha + \beta \left(\sum_{h \in V(H)} x_{gh} \right) + \gamma \left(\sum_{\{h, h'\} \subseteq V(H)} x_{gh}x_{gh'} \right)
\]

for \(g \in V(G) \)

- with

\[
\alpha = (n_H - 2)(n_H + \frac{1}{2}(n_H - 1)\sqrt{2}) \\
\beta = -((2n_H - 3) + (n_H - 2)\sqrt{2}) \\
\gamma = 2 + \sqrt{2}
\]

are a 2-sos certificate of \(f^* \).
Further certificates III

Theorem (Gaar, Krenn, Margulies, W. 2019)

▶ For \(k_G = n_G \geq 1 \) and \(k_H = n_H - 3 \geq 1 \)

Vizing’s conjecture is true as the polynomials

\[
s_g = \sum_{i=0}^{3} \alpha_i \sum_{S \subseteq V(H)} \prod_{h \in S} x_{gh} \quad \text{for} \quad g \in V(G)
\]

▶ with

\[
\alpha_0 = -\frac{1}{6} n^3_H \left(\sqrt{3} + 3 \sqrt{2} + 3 \right) + \frac{1}{2} n^2_H \left(2 \sqrt{3} + 5 \sqrt{2} + 4 \right) - \frac{1}{2} n_H \left(\frac{11}{3} \sqrt{3} + 6 \sqrt{2} + 3 \right) + \sqrt{3},
\]

\[
\alpha_1 = +\frac{1}{2} n^2_H \left(\sqrt{3} + 3 \sqrt{2} + 3 \right) - \frac{1}{2} n_H \left(5 \sqrt{3} + 13 \sqrt{2} + 11 \right) + 3 \left(\sqrt{3} + 2 \sqrt{2} \right) + 4,
\]

\[
\alpha_2 = -n_H \left(\sqrt{3} + 3 \sqrt{2} + 3 \right) + 3 \sqrt{3} + 8 \sqrt{2} + 7,
\]

\[
\alpha_3 = \sqrt{3} + 3 \sqrt{2} + 3
\]

are a 3-sos certificate of \(f^* \).
Further certificates IV

Theorem (Gaar, Krenn, Margulies, W. 2019)

For $k_G = n_G \geq 1$ and $k_H = n_H - 4 \geq 1$ Vizing’s conjecture is true as

$$s_g = \sum_{i=0}^{4} \alpha_i \sum_{S \subseteq V(H)} \prod_{h \in S} x_{gh} \quad \text{for } g \in V(G) \text{ with}$$

$$\alpha_0 = \frac{1}{12} n_H^4 \left(2 \sqrt{3} + 3 \sqrt{2} + 1 \right) - \frac{1}{6} n_H^3 \left(9 \sqrt{3} + 12 \sqrt{2} + 2 \right)$$
$$+ \frac{1}{12} n_H^2 \left(52 \sqrt{3} + 57 \sqrt{2} - 7 \right) - \frac{1}{6} n_H \left(24 \sqrt{3} + 18 \sqrt{2} - 17 \right) - 2,$$

$$\alpha_1 = -\frac{1}{3} n_H^3 \left(2 \sqrt{3} + 3 \sqrt{2} + 1 \right) + \frac{1}{2} n_H^2 \left(11 \sqrt{3} + 15 \sqrt{2} + 3 \right)$$
$$- \frac{1}{6} n_H \left(83 \sqrt{3} + 99 \sqrt{2} + 1 \right) + 10 \sqrt{3} + 10 \sqrt{2} - 3,$$

$$\alpha_2 = n_H^2 \left(2 \sqrt{3} + 3 \sqrt{2} + 1 \right) - n_H \left(13 \sqrt{3} + 18 \sqrt{2} + 4 \right) + 5 \left(4 \sqrt{3} + 5 \sqrt{2} \right) + 2,$$

$$\alpha_3 = -2 n_H \left(2 \sqrt{3} + 3 \sqrt{2} + 1 \right) + 15 \sqrt{3} + 21 \sqrt{2} + 5,$$

$$\alpha_4 = 4 \sqrt{3} + 6 \sqrt{2} + 2$$

are a 4-sos certificate of f^*.
<table>
<thead>
<tr>
<th>1 - Graph Theory</th>
<th>2 - Split</th>
<th>3 - Algebraic Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma(G) \gamma(H) \leq \gamma(G \square H)$</td>
<td>n_G, k_G, n_H, k_H</td>
<td>$f^*(z) \geq 0 \ \forall z \in \mathcal{V}(I_{viz})$</td>
</tr>
<tr>
<td>4 - Sum of Squares</td>
<td>5 - Semidefinite Programming</td>
<td>6 - SDP Solver</td>
</tr>
<tr>
<td>$f^* \equiv \sum_{i=1}^{t} s_i^2 \mod I_{viz}$</td>
<td>$\exists X : X \succeq 0, \quad f^* \equiv v^T X v \mod I_{viz}$</td>
<td>numeric certificate</td>
</tr>
<tr>
<td>7 - Guess</td>
<td>8 - SAGE</td>
<td>9 - Prove</td>
</tr>
<tr>
<td>exact certificate</td>
<td>verify certificate</td>
<td>prove certificate</td>
</tr>
</tbody>
</table>
Conclusions and ToDo List

- New approach towards Vizing’s conjecture
Conclusions and ToDo List

- New approach towards Vizing’s conjecture
- We proved Vizing’s conjecture with this method by providing sparse, low-degree certificates for
 - $k_G = n_G - 1$, $n_H = 2$, $k_H = 1$
 - $k_G = n_G - 1$, $n_H = 3$, $k_H = 2$
 - $k_G = n_G$, $k_H = n_H - d$ for $d \in \{0, 1, 2, 3, 4\}$
Conclusions and ToDo List

- New approach towards Vizing’s conjecture
- We proved Vizing’s conjecture with this method by providing sparse, low-degree certificates for
 - \(k_G = n_G - 1, \ n_H = 2, \ k_H = 1 \)
 - \(k_G = n_G - 1, \ n_H = 3, \ k_H = 2 \)
 - \(k_G = n_G, \ k_H = n_H - d \) for \(d \in \{0, 1, 2, 3, 4\} \)
- Certificates for more cases?
Conclusions and ToDo List

- New approach towards Vizing’s conjecture
- We proved Vizing’s conjecture with this method by providing sparse, low-degree certificates for
 - $k_G = n_G - 1$, $n_H = 2$, $k_H = 1$
 - $k_G = n_G - 1$, $n_H = 3$, $k_H = 2$
 - $k_G = n_G$, $k_H = n_H - d$ for $d \in \{0, 1, 2, 3, 4\}$
- Certificates for more cases?
- Solve the SDP exactly?

Thank you!
Conclusions and ToDo List

- New approach towards Vizing’s conjecture
- We proved Vizing’s conjecture with this method by providing sparse, low-degree certificates for
 - $k_G = n_G - 1, n_H = 2, k_H = 1$
 - $k_G = n_G - 1, n_H = 3, k_H = 2$
 - $k_G = n_G, k_H = n_H - d$ for $d \in \{0, 1, 2, 3, 4\}$
- Certificates for more cases?
- Solve the SDP exactly?

- Thank you!